
■-i™w»»^(^"7T«r^~''^"' ' —'     "-  -"-^-      H».||J|I.IHI 111»      ii   -^ 

U.S. DEPARTMENT OF COMMERCE 
National Technical Information Stnrict 

AD-A029 388 

NOVA-2 - A Digital Computer Program 

for Analyzing Nuclear Overpressure 

Effects on Aircraft. Part 1. Theory 

Kaman AviDyne 

August 1976 

fe. -"-■"" ■- ^ .i i ■ 



Wrni**™*"*-    '    !■   ' ^  ^Hk'Jinyiill^1    n, •■"'■■'■"-   ' •""'^^T^T^ ''T^'W'I'^'T^—---M   n«\t;m m »ipiMJ   .Tw-My^-w-ii iiyiti  iiK^^r^yr ■.r-i^.TT-    .11^11    1  ,|     Jippi 

X 
00 
00 
a 

\ 

254095 
AFWL-TR-75-262, Pt. 1 

/I 
/! 

1/ 

1/ 
1/ 

AFWL-TR- 
75-262 

r i. I 

NOVA-2 — A DIGITAL COMPUTER PROGRA/^A FOR 
ANALYZING NUCLEAR OVERPRESSURE EFFECTS ON 
AIRCRAFT 

Part 1 

Theory 

Kaman AviDyne 
Burlington, MA 01803 

August 1976 

Final Report 

■A 0- '.\\V 

^# 
A 

0^ 
*> 

Approved for public release; distribution unlimited. 

REPRODUCEDBr 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

U. S. DEPARTMENT OF COMMERCE 
SPRINVIEUI. VA. 22111 

AIR FORCE WEAPONS LABORATORY 

Air Force Systems Command 

Kirtland Air Force Base, NM 87117 

^5- 

mm --   | ,   | Ci^-^M^tiaa^..—-.:--.:         _ 



r 
msjuwyiim". ,"i' |"'1""1'''■""ww^ipwwiw?f ■'■ " 

AFWL-TR-75-262, Pt. 1 

!■«       '   i«f|i»iii|i nnmi ,■ I I IpillWHIBHfllP'-i ■'   m   •  11 ■■ lllll» 

This final report was prepared by Kaman AvIDyne, Burlington, Massachusetts, 
under Contract F29601-75-C-0032, Job Order 88090339, with the Air Force Weapons 
Laboratory, Klrtland Air Force Base, New Mexico.   Mr. Gerald M. Campbell (SAT) 
was the Laboratory Project 0ff1cer-1n-Charge. 

When US Government drawings, specifications, or other data are used for any 
purpose other than a definitely related Government procurement operation, the 
Government thereby Incurs no responsibility nor any obligation whatsoever, and 
the fact that the Government may have formulated, furnished, or In any way 
supplied the said drawings, specifications, or other data, Is not to be regarded 
by Implication or otherwise, as In any manner licensing the holder or any other 
person or corporation, or conveying any rights or permission to manufacture, use, 
or sell any patented Invention that may In any way be related thereto. 

This report has been reviewed by the Information Office (01) and Is releasa- 
ble to the National Technical Information Service (NTIS).   At NTIS, It will be 
available to the general public, Including foreign nations. 

This technical report has been.reviewed and Is approved for publication. 

GERALD M. CAMPBELL 
Project Officer 

TERRY N; LAURITSEN 
Lt Colonel, USAF 
Chief, Technology and Analysis Branch 

FOJ^HE COMMANDER 

PAUL J. DAILY 
Colonel, USAF 
Chief, Analysis Division 

^ 
DO NOT RETURN THIS COPY. RETAIN OR DESTRÖT." 

»• 

tiMMmi       n '-"—*~~—■—■ .-.■,..■.,--. ^ :-- -.-; •».■■-■.-J. ,. .. , 



11    '^mmrm^imifm ^mimmm ^^WWP1 

-.- -..'v, '*vrv^ 

UNCLASSIFTgD 
sieumrv CLASHFICATIOM OP TMII »AOC (*>>«> Of tmtMO 

REPORT DOCUMENTATION PAGE 

AFWL-TR-75-262. Pt. 1 

a. SOVT AcetuiON NO. >. ntaPitHft CATALOO BüBiiS 

NOVA-2 - A DIGITAL COMPUTER PROGRAM FOR 
ANALYZING NUCLEAR OVERPRESSURE EFFECTS ON 
AIRCRAFT, Part 1, Theory 

7. AUTHOIVO 

W1T11am N. Lee 
Lawrence J. Mente 

t.   »IRPONMINa OROANIZATION NAMI ANO AOONCIS        -»^-~, 

Kamen AvIOyne 
A Division of Kamen Sciences Corporation 
Burlington. HA 01803  

ii. eoNrnokUNO op'iet NAMI AMO AOORCSS 

Air Force Weapons Laboratory (SAT) 
Klrtland Air Force Base, NM 87117 

14.   MONITOftlNS AMNCY NAMC ft ISSmStOI MlStmt hum Conmlllni QIHc») 

READ INSTRUCTIONS 
BEFORE COMPLETIWO FORM 

i. TVPI or ncponr ft rcmoo covtuio 

Final Report 

KA TR-128 
I. BBBTlRBf oR SIXBT BBBIW« 

F29601-75-C-0032 

10.   PMOORAM CLIMCNT, »MOJCCT, TASK 
ARIA ft WORK UNIT NUMIIRt 

62601F 
88090339 

12.   NKPONT OATt 

August 1976 
II.   NUMMtR OP PAOKS 

JLIQ. 
IS.   SKCURITY CLASS, for M* rtpart) 

UNCLASSIFIED 

IS«.   OCCLASSiriCATION/OOWNaRAOINC 
SCHKDULI 

IS.   OlSTRIturiON STATIMINT (ol Mm HfM) 

Approved for public release; distribution unlimited. 

17.   OlSTRiauTlON STATCMCNT (ol til« •*atraet «nrand In «lee» 20, // Mlltma Inm Rtpari) 

IS.   SURRLtMCNTARV NOTES 

This report consists of two parts. Part 1, Theory, includes the front matter, 
sections I through V, pages 1 to 196. Part 2, Computer Program, includes 
Section VI and the references, pages 197 to 348. 

IS.   KEY WOMOS fCaniinu» an nww »ttm il n«c««««fr and Kfnufy t>r block mmOor) 

Aircraft aerodynamic loading 
Aircraft vulnerability 
Digital computer program 
Elastic-plastic material behavior 
Ground reflection effect 

Nuclear blast 
Overpressure effects 
Structural response of beam 

and panel elements 

20.    ASSTHACT 'Cani/mn on tororio tido II ntetttmrr «id iäontUr t>r bloc» nuotOor; 

N0VA-2 (Nuclear Overpressure Vulnerability Analysis, Version 2) is an updated 
version of M0VA, a F0RTRAN-IV digital computer program for calculating the 
response of individual structural elements of aircraft, such as stringers, 
frames and panels, exposed to the transient pressure loading associated with 
the blast wave from a nuclear explosion. The updated version extends the 
capability of NOVA to analyze rib elements, frames with variable cross section, 
and offers a choice of clamped, simply supported or free edge boundary (over) 

DO ,: TT, 1473 tDITION Or  t NOV «S IS OHOLCTS UNCLASSIFIED 
SeCjRITv :LASSIFIC*T!ON Of fms l»»oe   IWion 0«>« £nf»r»a) 

„MMW^MMMMM m^ 



iui«;.|fwpi'in n ■ "■■■ i ' .■i   ■ i i i—^^^wwy mmmmm  

r 
IINflASSTFTFn 

HCUWITV CLAtliriCATIQM Og TMH ^AO<r»W>— Ol« IntMag) 

ABSTRACT (cont'd) 

conditions. For Inelastic structural response, a much Improved elastic« 
plastic model for material behavior Is provided. Also added to NOVA Is 
the REFRA near-ground reflections model for blast waves. The program 
still provides the overall capability to analyze multllayered beam and 
panel elements exposed to a steady-state subsonic or supersonic aero- 
dynamic preload, followed by a dynamic blast wave. A critical slant 
range Is automatically determined In an Iteration where damage criteria 
(specified on a probabilistic basis) are compared with the structural 
response. 

><^ UNCLASSIFIED 
SfCUAITY CLASSIFICATION 0' ▼'IS »»oei'Whtn C»l« Snitrtai 

mm MM« ||ir.>.   .    .   ,— ^.^^MMMtttkmimittk J.^xi^.,..  .--  i/j.-..^-^ L „tu .„-..L.—.JJ.-V. ..._..; 



i.|iiii..,i>l)^.lr-i 
ftm    ■PWMIW  IUII » || F i nil    HI null   II 

I '.>KNMft^*«*MMMrtv*WKnn. -. 

PREFACE 

\     I 

! 

This report represents continuation of work performed by Kamen 

AviOyne, Burlington, Massachusetts, and previously documented in AFWL- 

TR-72-115, Volume 1. The current uport contains a complete descrip- 

tion of new extensions and modifications of NOVA and also retains 

applicable sections from the previous volume. 

Mr. Willie J N. Lee and Mr. Lawrence J. Mente were prlncipel inves- 

tigators and project leeders for the current effort. Other technical 

contribucors for the current effort were as follows: Dr. Norman P. Hobbs, 

Mr. Garabed Zarterian; Mr. John H. Thompson; and Mr. Michael Tomayko. 

This work was performed under the Structural Mechanics Group of Kamen 

AviOyne heeded by Mr. Emanuel S. Criscione. 

The contractor's report number is KA TR-128. 
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SECTION I 

INTRODUCTION 

NOVA-2' (Huclear Overpressure Vulnerability Analysis, Version 2) Is 

a digital computer program representing a complex analysis of aircraft 

structural elements subjected to nuclear overpressure effects.    This 

version contains extensive modifications of NOVA (ref. 1, now also 

referred to as NOVA-1) with expanded analytical capabilities, improved 

accuracy, and more efficient computer utilization.    This document 

presents a complete description of the analytical methods used and of 

the computer program, including guidelines for running the program and 

example problems. 

The NOVA-2 program provides a <-echnique for predicting the elastic 

and Inelastic response of aircraft structural elements to the transient 

pressure loads associated with the blast wave from a nuclear explosion. 

These high intensity pressure loads are treated separately from the gust 

loads due to the blast wave and are associated with the initial reflec- 

ted pressure which occurs daring diffraction of the blast wave around 

the structure.    Because the pressures exist for such a short time, they 

excite high frequency, secondary structure such as skin panels, string- 

ers, longerons, frames,  ribs, canopies and radomes.    The gust, or post 

diffraction, loads tend to excite low frequency, primary structural 

surfaces such as the wings, fuselage, and horizontal and vertical tails. 

Therefore, the separation between pressure  (often referred to as over- 

pressure) and gust effects on aircraft structure Is generally based on 

secondary high frequency structure and primary low frequency structure. 

The program determines the slant range between the aircraft and 

point of burst tor specified levels of structural damage as a function 

of structural element; weapon yield, orientation and height of burst; 

aircraft speed and altitude; and degree of probability that the level of 

damage is Incurred or exceeded.    Likewise,  it determines the response of 

structural elements for a specified slant range. 

-1- 
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/ slngl« element dynamic analysis technique, which considers both 

linear elastic and inelastic deformations and assumes that the element 

does not interact with adjacent elements, reduces the complexity of the 

modeling and analysis, and thus provides a solution more rapidly than a 

finite element analysis. The errors introduced by considering isolated 

structural elements rather than oulti elements appear to be reasonable 

for most components when compared with those introduced by other uncer- 

tainties associated with the analysis. However, for structures with 

rapidly changing cross section, such as a nose radome, the errors may be 

unacceptable. 

The program uses a quasi-atrip method for predicting the pressure 

loading on the lifting surfaces of the aircraft prior to the arrival of 

the blast wave. The pressure induced by the thickness of the airfoil is 

neglected and the pressure loading is assumed to be a function of and 

directly proportional to the angle of attack. The pressure loadings 

induced on the wing and tail surfaces by the blast wave are predicted 

using linear acoustic theory and the assumption that the airfoil sec- 

tions can be represented by their mean-camber lines. 

The program predicts, prior to and during diffraction of the blast 

wave, the pressure loading on the surface of the fuselage by relating 

the fuselage to an equivalent body of revolution with the same dis- 

tribution of cross-sectional area along its length and by applying the 

reflection theory for the interaction of a shock wave with a flat 

surface. 

A 1-KT nuclear standard, based on data obtained from the AFWL 

SPUTTER and SAP fluid dynamics programs, provides the time-dependent 

free-air blast characteristics for the BLAST routines. For near-ground 

bursts where the blast wave strikes the ground and is reflected, two 

models are now optional in NOVA-2:  1) an empirical model, which describes 

the wave forms associated with regular reflection and the transition to 

Mach reflection, and 2) a comprehensive data tape, based on Che REFLECT 

code, which provides a time history of the ground-reflected blast char- 

acteristics. 
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The program consists of three distinct routines, NOVA, DEPROB 

(Dynamic Elastic Plastic Response of Beams), and DEPROP  (Dynamic Elastic 

Plastic Response of Panels), written In FORTRAN IV. 

The NOVA routine is the master routine which controls the logic of 

the overall program.    It contains the subroutines for predicting the 

aerodynamic flight loads and the blast pressure loads that are applied 

to the lifting surfaces and fuselage during subsonic and supersonic 

flight, and for determining the slant range at which a structural ele- 

ment Incurs damage which has been specified on a probabilistic basis. 

The DEPROB routine provides the response of aircraft structure such 

as stringers, longerons, frames, ribs, and conical or cylindrical 

radomes which can be represented by an annular cross section.    The 

method of analysis used in this routine applies to beams which can be 

modeled in one dimension by a series of discrete masses interconnected 

by weightless bars.    Major additions to DEPROB in NOVA-2 are the ability 

to analyze elements with variable cross section, the addition of simply 

supported and free edge conditions, an Improved elastic-plastic stress- 

strain model, and the inclusion of rib buckling as a failure mechanism. 

The DEPROP routine provides the response of aircraft skin panels, 

canopies, and radomes that can be approximated by a cylindrical panel. 

The linear elastic option applies to single and multllayered panels of 

Isotropie or orthotropic material, and the elastic-plastic option 

applies to single layer panels of Isotropie material. DEPROP has been 

modified to Include the following: symmetric or nonsymmetrlc combina- 

tions of clamped or simply supported edge constraints, a much improved 

elestic-plastic stress-strain model, and improved overall accuracy. 

The NOVA-2 program as a whole represents a much more efficient 

code than NOVA-1, requiring less computer core and time.    This is 

accomplished by making more extensive use of overlaying techniques and 

through improved computational techniques. 
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SECTION II 

BLAST MODELS 

In order to simulate Che overpressure effects of a blast wave 

emanating from a nuclear explosion, NOVA-2 provides the analyst with a 

choice of ground reflection models when ground reflection is Important. 

A one-dimensional free-air blast model is the basis of both models, and 

is used when ground reflection is not important.    One ground reflection 

model is a semlemplrlcal functional curve fit  (that used in NOVA-1); 

the second is a two-dimensional data tape generated by a hydrodynamic 

computer code.    These two models are described in subsections 2.1 and 

2.2, respectively. 

The free-air blast model in NOVA-2 is the most recent AFWL 1-KT 

curve fit model available (refs. 2 and 3), which is based on the AFWL 

1-KT nuclear standard data tape (ref. 4).    Figure 1 compares overpres- 

sure versus range for both free-air models.    For historical complete- 

ness,  the IBM Problem-M curve contained In reference 5 is also shown. 

By coincidence this curve nearly coincides with that of the current 

curve fit model, and the differences arc indistinguishable in figure 1. 

2.1 ANALYTICAL GROUND-REFLECTED BLAST MODEL 

The first ground-reflected blast model is a semlemplrlcal, two- 

dimensional model, identical in form to that used in NOVA-1. The only 

differences are minor changes in curve fit coefficients. The basic 

mathematical model is documented in reference 6. 

2.2 REFSA GROUND-REFLECTED BLAST MODEL 

The second ground reflected blast model available in NOVA-2 is in 

the form of a two-dimensional blast tape (logical file TAPE10), read and 

interpreted by the REFRA routine (ref. 7). The original data base is 

generated by the REFLECT code (ref. 8) and subsequently processed for 

more efficient use by REFRA. 
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Only data pertaining to region III of figure 2 are provided on 

tape, as the undisturbed region, region I, merely represents ambient 

conditions, and data for region II are provided by the free-air model. 

A moving mesh model In the REFLECT code provides data behind the shock 

fronts which are precisely defined and free of the complications asso- 

ciated with various artificial smoothing processes. The REFRA routine 

searches the data tape to determine which region Is appropriate and 

returns the corresponding blast data. It should be readily apparent 

that because the data tape Is limited to regions behind the Mach and 

reflected shocks, great savings in tape length and computer search time 

are realized. Accordingly, a very comprehensive time history of the 

reflected wave, and the region behind it, Is made available on tape. 

Each REFLECT run, and hence each corresponding data tape. Is char- 

acterized by a unique scaled height of burst (above ground level), 

scaled to 1-KT at sea level. To select the appropriate tape for the 

problem of Interest, figure 3 shows the relationship of relevant geo- 

metrical parameters. 

Once the ground altitude (H ), the aircraft altitude (H) and the 

vertical separation between the aircraft and the burst (z) are selected, 

the height of burst Is uniquely specified (HOB - H - H - z). The 

scaled height of burst (SHOB) Is then determined from the following 

relationship, making use of modified Sachs scaling: 

SHOB 
Pa/po 
W 

1/3 

HOB 

where W is the yield in kilotons, p is the ambient pressure at the air- 

craft altitude, and p is the ambient pressure at sea level, taken to be 

14.696 psl. 

It can be seen that the altitude of the aircraft relative to the 

burst must remain constant for problems using a single data tape. 

Hence, when the program Iterates to find a critical slant range, the 

Iteration is restricted to constant aircraft and burst altitudes for 
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Figure 2.    Geometry of Blast  Field  Involving Ground Refl ection 
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Figure 3.    Geomecrical Relationship of Aircraft,   Burst Center, 
and Ground 
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Chla ground reflection model, whereas the method described In subsec- 

tion 2.1 does not have this limitation since the empirical model will 

handle any height of burst. The REFRA model will, In general, also take 

slightly more computer time for problems Involving ground reflection. 

It should be noted, however, that the REFRA model offers a much more 

sophisticated, complete description of the phenomena of ground reflec- 

tion. 
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SECTION III 

PREBLAST AND BLAST-INDUCED LOADING 

3.1 LOADING ON LIFTING SURFACES 

The pressure loading at a point on a lifting surface of an air- 

craft engulfed by a blast field may be approximated in terms of two 

pressure distributions; the first associated with the flow prior to 

blast arrival and the second Induced by the blast wave. The form used 

Is as follows: 

p    - p    -  (AC w      + 4c w) i pV (1) *       u pss pgir 

where 

p0 and p   are the pressures at a point on the lower and upper 

surfaces, respectively 

AC and Ac are the steady-state and transient pressure coeffl- 
P     P 

clents, respectively, at the point on the lifting 

surface 

w  and w  are the steady-state and blast-Induced flow velocities 
ss    g 

normal to the lifting surface, respectively, at the 

point on the surface 

p is the Instantaneous density at the point on the 

surface 

V Is the resultant velocif.y of the steady-state flow 

plus the blast-Induced flow at the point on the 

surface 

The procedures by which AC and Ac are calculated for lifting surfaces 

in the analysis are presented In the remainder of this subsection. 

-10- 
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The pressure Incveese on the lover surface, p. - pa(  Is taken 

equal In magnitude end opposite In sign to the pressure decrease on 

the upper surface, p   - pm, where p^ Is the pressure at the point In 

the absence of the lifting surface. 

P- + 7 (P. " P..) (2) 

7 (P. " P..) (3) 

Since p. and p    cannot physically achieve negative values,  these quan- 

titles are set equal to zero within the computer analysis whenever 

either becomes negative according to equation  (2) or equation  (3); how- 

ever,  the correct value of p. - p  .as given by equation  (1),  is 

retained In the analysis. 

3.1.1    Preblast Loading 

This section provides formulations for predicting the pressure 

loading coefficient AC    on lifting surfaces before exposure to blast 
P 

environment.    Although more elaborate techniques are available.  I.e., 

surface methods, the emphasis here Is on practical and simplified tech- 

niques which are more appropriate for a vulnerability code.    The form- 

ulations presented here are for subsonic,  transonic, and "low to 

medium" supersonic flight ranges and consider typical classes of wing 

or tall planforms during a symmetric flight maneuver.    The derived 

equations form the basis for the program in the vulnerability code. 

A rigorous approach cannot be offered for calculating the 

pressure coefficient at arbitrary points on all possible planforms 

over a broad range of Mach nunüers.    From the practical point,  it is 

necessary to introduce many simplifications.    These are covered in 

the discussions f.o follow. 

-11- 
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The surfaces ere assumed to be flat places. This means that 

the Incremental pressure at any point on the planform Is due to angle of 

attack only, and thickness-induced pressures are neglected. This assump- 

tion is a reasonable one, except possibly at points near the leading 

edge. Furthermore, the angle of attack, a, is assumed to be small, so 

that the pressure distributions are directly proportional to the angle 

of attack. 

The general planform to be considered is depicted in figure 4. 

The planform is assumed to have a line of symmetry which is parallel to 

the free-stream direction. The tip chord is approximated by a line 

parallel to the centerline of the planform. 

s - -4-1 ^ 

For purposes of calculating the pressure coefficient, AC , the actual 

planform is replaced by a swept wing which has at station y the same 

coordinates and slopes of the leading and trailing edges] 

x_,  j—  as the actual planform. Consider the specific planform in 

figure 5.  The actual (semispan) planform is that described by the 

straight line segments OabcdeO.  In calculating the pressure at point 1, 

the equivalent planforo will be OagfO.  On the other hand, for point 2, 

the equivalent swept wing will be idchi.  Thus, the equivalent swept 

wing is one with leading and trailing edge sweeps equal to the leading 

and trailing edge sweeps of the actual wing at station y. This method 

may be considered as a "quasi-strip" method in that the strip at the 

pressure spanwise station determines the planform. Yet It is not a 

strip method per se because finite span effects are accounted for 

approximately.  In fact, If the slopes of the leading and trailing edges 

of the actual planfonn are constant, the equivalent planform is the 

actual planfonn regardless of where the pressure is to be determined. 

W?]. 
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Figure 4.    Actual Planform Geometry 
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Figure 5. Method of Developing Equivalent Planform 
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Two possibilities for Che semlspan, s, can arise: Referring 

to figure 6, the semi-span of the equivalent wing can be s with the tip 

chord greater than zero or s. with no tip chord. The situation in (b) 

will not occur too often for actual «rings. An example when this occurs 

is given by (c), where the pressure is to be computed for a point 

y < y. Provisions are made in the formulation and in the computer 

program to handle cases of types (b) and (c), although they are not 

expected to be used very often. These cases are numbered 2, 7, 8 and 

9 among the possibilities listed in table 1. 

The equivalent planform geometry is presented in figure 6. 

The coordinate systems (x, y) or (£,n) of the original planform are 

retained for convenience, so that the coordinate of the pressure point 

(x,y) on the actual planform is also the (x,y) on the equivalent plan- 

form. It should be noted that the leading and trailing edges intersect 

Che centerllne aC 

Xj^O) - Xj^ - y Can^ (5) 

xT(0) - X.J - y canAT (6) 

When the leading or trailing edge Is curved or Is composed of 

segments of straight lines, several equivalent planforms are possible. 

Each such planform will have Its leading and trailing edges described 

by 

xL(n) - x_ + (n - y) canAL (7) 

xT(n) - xT + (n - y) canAT (8) 

and. In general, Che planform apex will not be at (€,n) ■ (0,0). The 

chord at n Is defined by Che expression 

-15- 
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c(n) - ^(n) - ^(n) - (xT - 5^) + (n-y)(tanAT-tanAL) (9) 

The chord becooes zero when 

n - y + nrr .\^   = ■, m tenA. - tanA.   1 

If 8. > a, the equivalent planfom Is terminated at n ■ s, and corre- 

sponds to (a), figure 6. 

If s. < s, the equivalent planform Is terminated at n ■ a. and the 

taper ratio will be zero. This corresponds to (b), figure 6. 

Referring to table 1, Cases 1 and 2 are subsonic situations. 

Cases 3-9 are supersonic, while Case 10 Is transonic. For supersonic 

flight, distinctions have to be made to reflect leading and trailing 

edge conditions. Let 0 - *\n-l\.    If 6 cot A > 1, the edge is super- 

sonic; if B cot A < 1, the edge is subsonic. 

In the absence of a better way of determining transonic pres- 

sures. Case 10 is programmed to proceed as follows:  If 0.8 < M < 1.2, 

the pressure is computed for M ■ 0.8 and M ■ 1.2 according to appro- 

priate Cases 1-9. The pressure is then Interpolated linearly for the 

pressure coefficient at the desired Mach number according to 

^Vo.8<M<1.2 " [Hd*)  (VM.0.8 + {HT
1
)  

(
VM-1.2    <"> 

Table 2 presents a list of certain planform parameters which 

are useful in the development of the pressure coefficients. 

Different approaches arc followed for the subsonic and super- 

sonic cases.    For supersonic cases,  the pressures may be obtained 

directly from linearized steady supersonic flow, with additional 
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approximations for certain regions of the planform.  In contrast, for 

the subsonic cases, the spanwise loadings (lift per unit span) are 

first determined. The pressures are then determined by assuming a 

chordwise pressure distribution and determining an "amplitude" for this 

distribution such that the pressures integrated over the chord give 

the correct lift per unit span at that station. The distribution used 

for all subsonic Mach numbers is a modification of the chordwise dis- 

tribution from thin airfoil theory, and is illustrated in figure 7. 

Each of the cases will now be discussed individually. 

a. Subsonic Cases (M < 0.8) 

Given the location (x,y) on the planform, the quantities 

x-, x-, tanA. , tanA- can be determined from the planform geometry. If 

"T ' "L 
s, - y + -—;; —r- > s. Case 1 is considered; if s, < s. Case 2 
1  '  tanAT " tanAT 1   ' 

is appropriate. Only Case 1 will be discussed because Case 2 is iden- 

tical with Case 1, except s is replaced by s. and the taper ratio X 

is set equal to zero. The parameters 

i.e. Ag, x, ßA(-^y 

may be computed according to the expressions given in table 2. Using 

these parameters, the spanwise loading at y 

^■Uä' 
* ,        « 

K of reference 9 is taken equal to 1.0. 
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Figure  7.      Subsonic Chordwise Pressure 
Discribucion 
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and 

ßCL 
ßCL  -  , since ic - 1 (13) 

o 

may be obtained by Interpolation from the prepared curves of reference 9. 

Since these interpolations are over multiple variables, expressions 

wtre derived for approximating the curves of figures 3 and 4 of ref- 

erence 9 to facilitate the interpolation process. The pressure differ- 

ence coefficients are then computed according to 

AC - C 
P 

where 

La " Q (s) 
f (X) (2 + ^"H^ [tan AL " tan V) (14) 

11
-22(^-r^;)' -L ix < 0.05 xT + 0.95 xL 

tix)    -< (15) 

/XT - 
x 

0.1287^^ — , 0.05xT+0.95xL 1 x < xT 

b. Supersonic Cases (M > 1.2) 

For supersonic flow, the planform is divided into distinct 

regions by Mach lines emanating from leading edges of the root chord and 

the tip chord and by "reflected" Mach lines from other edges as shown 

in figure 8. For each of these regions, different pressure expressions 

apply.  The particular region in which the point of interest (x,y) lies 

must be identified as to type of region so that an appropriate pressure 

formula may be used.  To illustrate this brief description, consider 

Case 3. Depending on the sweep of the Mach line, A^ * tan 6, three 

possible situations may arise.  These situations are depicted in 

-22- 
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CASE  3Xe) 

MACH LINES 

REFLECTED 
MACH LINE 

Figure 8.     Various  Pressure Regions   on   Planform 
for Case   (3) 

■23- 

w,.-.■.,■.,■■ ■iv*K%'t)mw>i7iW 

CASE  3(b) 

MACH LINES 

-•-■■■■'-■■■ 



I H,l)l I.* HUPP H I U^MI   H 1^*^ rF-.™^-."-,"-'!?!-^II1-.  .1 IIIIAippff^.lH^^T "■^•""■^'■" ■F" 

figure 8 and are described in references 10 and 11. For points in 

Region I, the AC would be the same aa 
P 

same sweep as the leading edge, and Is 

Region I, the AC would be the same ca  on an infinite wing with the 

4 cot AT 
(AC.) 

P'l V 
(16) 

g2cot2AL - 1 

For Region II, the AC may be obtained from the results for the corre- 

sponding region on a delta wing with supersonic leading e-'ges. 

4 cot A, 
(A
VII Vi^^v 

r       ii     7 
2,-1/1- ß*_tan_v. 1 sin   '       
ir     ■• -        2 

•tan v) 

/ 1 - B tar 

V ß2(cot2AL-t 

where 

(17) 

2 
tan v .1 

(^ - yL tan V( 

For Region III, the AC may be defined by: 

(
VIII 

8 cot A, 

ir J 6 cot \ - 1 

tan 
/       (1 + 3 cot AL)(s-y) 

_ 

^ cot Aj^fx-C^-y tan AL)-s(tan AL)-ß(s-y) 
(18) 
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Slmpl« exprasslons cannot b« found for Region« IV and V. For a point 

(xty) in Region IV of figure 8(b), the AC is interpolated linearly 

between the pressures at points a and b where (
AC

0)TT and (AC )-„ apply. 

If (x.y). lies in IV, but ahead of the dashed line in figure 8(c), the 

same procedure nay be applied. For (x.y), in IV but behind the dashed 

line, the AC is interpolated linearly between points c and d; point c 
P 

has (AC )11  and AC for point d is exactly 0. For points in Region V, 

such as (x,y)., AC is also interpolated linearly between points c and 
Z   p 

d.  In all cases, the line along which Interpolation takes place is 

parallel to the trailing edge. 

The Mach line patterns for Cases 4, 5, and 6 are as shown in 

:e 9. For the above cases, only (AC )VT can be obtained from 

solutions. Using the solution for a delta wing with subsonic edges 

(refs. 10 

system by 

figure 9. For the above cases, only (AC )„_. can be obtained from known 

ta vi 

(refs. 10 and 11), (AC )VI is defined In terms of the present coordinate 

4 cot AT 

C4Vvi • /       i     = — a9> 

yi - tan    AL tan    v E( ;(k) 

where 

tan2v    .1 JL^       I 
x - (x    - y tan AL) 

2 

and 

E(k) ■ complete elliptical Integral 

W2        

yr yi - k2 sin2  z dz;  k -  ^1 - S2 cot2 A,?        (2Q) 
n 

L 
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CASE S 

CASE  4 

MACH LINES 

REFLECTED MACH 
LINES 

CASE 6 

MACH  LINES 

REFLECTED   MACH  LINES 

■   f 

Figure 9.     Various Pressure Regions on    Planforas 
for Cases   (4),   (5)   and   (6) 
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For Regions VII and VIII, etc., approximate pressure« may be obtained 

through Interpolation, using the pressures along the boundaries of 

Region VI, and the fsct that the pressure must go to ztro at the sub- 

sonic trailing edge and the clp edge. 

Cases 7, 8 end 9, which are shown in figure 10, can be 

considered as subcases of the previous Case 3, and txhlblt the seme type 

of regions.    Therefore, the AC '• obtained previously also apply here. 
' P 

c.    Transonic Cases  (0.8 < M < 1.2} 

The pressure coefficient  (AC }  for 0.8 < M < 1.2 may be 

estimated by linear interpolation over M utilizing the AC 's for 

M - 0.8 and M - 1.2, as shown by equation  (11). 

3.1.2    Blast Airloads on Lifting Surfaces 

a.    General Discussion of Method 

The equations for the aerodynamic loads coefficient, 

Ac      due to a blast wave are presented in this section.    These coeffi- 

cients are used In equation (1)  for determining the local pressures. 

The problem to be addressed is the determination of Ac    as a function 

of position and time for arbitrary aircraft speed, blast orientation, 

and blast strength. 

Equations for predicting the blast-induced airloads on 

lifting surfaces for arbitrary strength of  ehe blast shock are not 

available.     References 12 through 18 have however demonstrated that 

predictions of the difference in loading between opposite surfaces of a 

wing or tail surface exhibit extensive areas of good agreement with 

measured loadings where the prediction is based on acoustic theory. 

Acoustic theory as applied to thin airfoils is based on 

the assumption that the airfoil section of a wing or tail, for example. 

-27- 
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CASE 7 CASE 8 

MACH  LINE 

'?,»l 

CASE  9 

MACH  UNES 

REFLECTED  MACH   LINE 

Figure  10.      Pressure  Regions on Planforms 
for Cases   (7),   (8)   and   (9) 

-28- 

- -    -■        ■ ■   - *-- 



I I I^IIByTiyiW»'—" —*" -'■"•-". •    Um'   ■••"•fg   '  .HW.IPIII»     p.   H.L.H^.   I .     I      n ^^.n.   nn     .1.     r-^-r-—.     ,   mn        »^  mi   1   -- —IH.IHJI.»JII.>.IIP^II),I   iij   II. 111111^1 

Is Chin «nough relativ« Co tha chord and span that th« sect Ion can b« 

raplacod by a lino, In this cao« tha caabar Una.    Tha flow la aasumad 

to ba attached to tha aurfaca.    Acoustic thaory  ha« baen demonstrated by 

references 12 through 18 to provide fairly good agreeaent with measured 

airloads due to blast and shock «avee «hen the comparison was made in 
terms of Ac   *    There ere a few exceptions to this which must be discussed. 

P 
One particular region of the shock loading that ha« been 

found to differ from acouatic predictions is in the vicinity of the 

shock front of e blaat-type weve.    The meaaured diatribution of Ac    is 
P 

found to have a flat-top peak here, in contrast to the singularity 

predicted by acouatic theory, e.g., reference 17,  figure S.    However, it 

is important to note that the integral over the elrfoil of the measured 

loading coefficient Ac    ie found to agree quite well with the theoreti- 

cal prediction of acouatic thaory, even to blast-induced angles of 

attack aa high aa 30 degreea, e.g., reference 17,  figure 6a.    Thia 

reault la similar to the well-known leading-edge aingularity for sub- 

sonic airfoils predicted by linearized theory, where in practice, Ac    ia 

found to riae to large values near the leading edge.    Higher observed 

values of Ac    further rearward of the leading edge ere found to compel 

sate for the ebeence of eny singularity, however,  tending to make the 

integral ovei 

predictions. 

values of Ac    further rearward of the leading edge ere found to compen- 

i i 

integral over the airfoil of meaaured Ac   agree better with theoretical 

At large blast-induced angles of attack, the flow even- 

tually aaparatae from the upper surface, cauaing Ac    to drop below the 

predictions of thin-airfoil theory.    Experiments which demonstrate the 

development of thia aaparation with time are described in references 12 

and 17.    Because the separation affecte the loading at long times rela- 

tive to the time expected for a typical aircraft surface to respond 

structurally to the bleat overpreaaure, no attempt ia made here to 

Include the complicated variation« in loading history at the late times 

a««ociated with flow aeperetion.    It ahould also be noted that the sepa- 

ration occurs on the low-pressure side of e wing or tail which would 

generally not be critical to the overpressure effects. 

-29- 
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Ic should also b« noted that the nonlinearities In the 

pressure on the two surfaces tend to compensate each other; the nonlinear 

Increase in p, - p^ with angle of attack is accompanied by a nonlinear 

Increase in p - P,, i although the latter tends to be smaller. There- 

fore, Ac tends to show less nonlinearity with angle of attack than do 

either of the other quantities. No general technique is available at 

present for predicting nonlinear loadings for the general cases of 

Interest, including effects of shock orientation, airfoil speed, etc. 

The linear acoustic theory has been developed for a wide variety of 

cases, so it is employed in the present work. 

After a blast wave impinges on a rectangular wing or 

tail, the pressures generally tend to return to equilibrium much more 

rapidly from waves moving in a chordwlse direction than moving spanwise. 

Therefore, the analysis will be based on strip theory, considering 

strips in a chordwise direction. Spanwise effects are expected to 

take place over times which are long compared to the structural response 

of interest for overpressure. 

Table 3 contains seven blast loading cases of Interest 

as functions of the airfoil Mach number, M, and the gust Mach number, 

M , of the blast shock. For these cases, there are seven forms of the 
g 
equation for Ac . 

P 

In the application of the equations, both Mach numbers 

are taken relative to the flow behind the blast shock, which was demon- 

strated in reference 14 to provide the best correlation of the airloads 

with experimental data. The blast radius is assumed to be very large 

relative to the dimensions of a wing or tall chord, so the blast prop- 

erties could be taken at any convenient point relative to the chord; 

the blast properties will be taken at the first point of blast inter- 

cept, either the leading or the trailing edge of the airfoil, for 

determining the blast Ac . 
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Th« Mach number of th« airfoil relativ« to th« flow 

behind the shock i« M - V /« , where V    is the velocity of the fluid 

behind the shock relative to the airfoil and a, is the speed of sound 

behind the shock.    The velocity diagram is shown in figure 11, where V 

is the airfoil velocity relative to the undisturbed fluid ahead of the 

shock, and v.   is the fluid velocity of the blast wave. 

Relative to the fluid behind the shock, the shock velocity 

is V   - v., where V    is the shock velocity relative to the undisturbed 

fluid ahead of the shock. 

The shock correlations carried out in references 14 and 

17 indicate that the envelopment rate of the shock wave is to be con- 

sidered relative to the "equivalent" airfoil sketched in figure 11, 

where the equivalent airfoil is aligned with the total flow, Vr, behind 

the blast shock.    Then,  the time At for the undisturbed shock to pass 

over the airfoil is given by 

V    - v. s        b 
cosO - a2) -    At (21) 

where $ is the angle between the shock outward normal and the plane of 

the actual airfoil. The positive sign applies for shocks impinging at 

the leading edge first and the minus sign for shocks impinging at the 

trailing edge first. Defining the gust Mach number, M , of the shock 

by 

M 
V - v. 
s   b 

g    a2 cos (4» - a2) 
(22) 

and then combining the equations gives 

-32- 

■Ma   - ■■ • 



II    "' »■((JJI^flPVIiPIPHJ.J     ^ww—imwni«!!!»!"    ippp«q«^RP<. .>•  I mmm* ' ~r™T— 

EOUIVAtENT AiRPOIL 

Figure  LL.     Velocity Diagram    Relative  to Flow 
Behind Shock 
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M   +   Mg      "      ±17^ (23) 

Note that M can be positive or negative, depending upon the shock 

orientation relative to the equivalent airfoil; positive for shocks 

arriving from the front and negative for shocks arriving from the rear. 

Also, because a shock wave Is subsonic relative to the fluid behind It, 

the absolute value of M can be less than unity, thus explaining the 

presence of such cases In table 3. 

b. Discussion of Methods for Various Cases of Airfoil and 
Shock Mach Numbers 

The wave diagrams used here for the seven cases are drawn 

with the coordinates fixed on the undisturbed fluid at rest ahead of the 

blast wave In the absence of the airfoil. The airload equations which 

correspond to figures 12 through 18 are listed In tables 4 through 10. 

Acoustic theory for thin airfoils assumes that all perturbations to the 

fluid due to the airfoil and the shock wave are weak. Therefore, acous- 

tic theory Is based on the assumption that the angle of attack at all 

times Is small relative to a radian. 

The X axis Is directed forward with the origin at the 

point of shock Intercept with the leading edge (or with the trailing 

edge. If the trailing edge Is Intercepted first) of the airfoil. The 

trace of the leading edge Is represented by Line I In figures 12 through 

18. The X coordinate Is scaled with the chord, c, so X ■ -1 at the 

trailing edge at the time of Intercept. The other coordinate in the 

figures is reduced time T, where T Is equal to real time t scaled with 

the ambient speed of sound, a, and the chord, c.  The trace of the 

trailing edge of the airfoil is represented by Line II. 

The equations for Ac are given in terms of Che actual 
P 

distance x and the real time, with x - c at the trailing edge. Actual 

distances and times are related to the scaled distances and time by 

-34- 
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SHOCK WAVE 

Figure 12.     Airload Regions on Airfoil  for 
Case  1   (M <. 1,  M   > 1) 
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Figure  13.     Airload    Regions  on Airfoil  for 
Case 4    (M <   I, M    <-l) 
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Figure 16.    AirLoad    Regions on Airfoil for 
Case  5     (M >   1, M    >  1) 

5 

Figure 17.  Airload Regions on Airfoil for 
Case 6  (M > 1, 0 - M^  1) 
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Figure L8.  Airload Regions on Airfoil  for 
Case 7 (M > L, M - -M) 
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Table 4 

AIRLOAD EQUATIONS FOR CASE 1 (M < 1, Mg > 1) 

Line Equation 

I 

II 

III 

IV 

x « 0 

X ■ c 

x ■ (M + M )at 

x « (M + l)at 

1 + M 

M + M, c + (M - l)at 

VI 

VII 
Region 1 

Ac  (t) «  2  
pl     (M„2 - 1]l/2 

1 + M c + (M - l)at 

2c 
a+M)a-M5a 

I Mai 

M 

Region 2 

Ac  (x,t) » üC„ 
P2        Pi 

! - | ta„-i 
(M+Mg) [ (l-M)at +x]-(l+Mg)c 

(1 + Mg)(c - x) 

1/2 

Region 3 

Ac  (x,t) 
P3 

1 - - tan-1 
M + Mg  (M + l)at - x 

Mg-1 

1/2 

2 +  — 
T 

M 

Mg(l + M) 

(M -1)(Mg+M)[(M+l)at - x] 1/: 

.0- 
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Table 4 (Cont'd) 

AIRLOAD EQUATIONS FOR CASE 1 (M < 1, M  > 1) 

Region 4 

Ac  (x,t) - Ac  (x,t) + tcn   (x,t) - &c„   (t) 
p4 P2        P3 Pi 

Region 5 

-«11/2 
4cpe(x,t) - (SIS)"' ♦(« 

where 

(t) " ^pJ^l'V P4 

^1 

c - *vz 

1/2 

^1 " 

Region 6 

c + (M - l)at 
1 + M 

Ac  (x) -  1-™. 
P6       [1-M2]1/2 

c-x 1/2 

I     11 IB——■■■ I   
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Table   5 

AIRLOAD  EQUATIONS  FOR CASE 2{M.<1/0<M<1) 

Line 

I 

II 

III 

IV 

Equation 

x 

x 

X 

X 

0 

c 

(M + M )at 

(M + l)at 

M + 1 
c +   (M - l)at 

VI 

Region 1 

Ac,,   (x,t) 
Pi 

2c 
(1+M)(l-Mja 

8 1 
T+M 

(M+M )   [(1+M)at - x] ll/2 

M, 

(l+Mg)X 

1/2 

M[l-Mg
2]1/2 

In 
[(1-Mg)x]1/2   +   {{M+Mg)[(1+M)at-X]} 1/2 

[(1+M){x-(M+Mg)at}] 
1/2 

Region  2 

Ac„   (x,t) 
P2 

8 

7T 

1 

1+M 

(M+M  )[(l+M)at-x] ll/2 

(1+Mg)x 

M[l-Mg
2]1/2 

In 
[(1-Mg)x]l/2  +  { (M+Mg) [(1+M)at  -  x]}l/2 

1/2 

[(1+M)((M+Mg)at   -   x}] 
/ 
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Table   5   (Cont'd) 

AIRLOAD EQUATIONS FOR CASE 2(M<1#0<M<1) 

Region 3 
4      £3" 
^2  V ; be     (x,t)   - 

p3 ST=ki   T x 

5(x,t)   - c - flil^,   (c-x) 

x(t)  c 
l+A^ 

J^r^^v'V 

AC 
at 

p^    TTH - ^ "  (l-HMHUMg) 

Ac. 
'1,2 

Ac at 
P2'   rr^rröqi < ^ - (i-M)a^M) 

Region4 

P4 

xv 

(X) - 

«  at 

4 
/l^M2 

(M-l) + 2C/1+M 

/c-x 

>3- 
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Table 6 

AIRLOAD EQUATIONS FOR CASE 3 (M < 1, -1 < M < -M) 

Line 

I 

II 

III 

IV 

Equation 

x - 0 

x ■ c 

x ■ c + (M+M )at 

x - c + (M-l)at 

x - jj±r c + (M+l)at 

VI c 
(M+M )a 

Region 1 

Lc    U,t) 
pl 

4^ 

TTMll-Mg2)172 
cosh -1 

(1+Mg)    (C-X) 

(1-M)[(M+Mg)at+c-x] 

1/2 

Region  2 

4M 
Ac     (x,t) 

p2 TrMd-Mg2]'/2 
cosh -1 

(1+M^) (c-x) 
1 2  

1/2 

(1-M)[(M+Mg)at+c-x] 

Region 3 

4M 
AC  (X,t) 

TTMll-Mg2]'/2 
cosh -1 (M+M )at + c 

. (M+M  )at+c-x. 

1 1/2 
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Table 6  (Cont'd) 

AIRLOAD EQUATIONS FOR CASE 3 (M < 1, -1 < M  < -M) 

Region 4 

Ac,, {x,t) - Ac  (x#t) 
P4        P2 

Region 5 

Ac„ (x,t) 
p5 

4 [  c-x 
i(l-M2)x , 

1/2 

t(t) 

where 

♦ (t) 
1 + T 

2 + T 

at ,  1 
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Table 7 

AIRLOAD EQUATIONS FOR CASE 4 (M < 1, M  < -1) 

Line 

I 

II 

III 

IV 

VI 

VII 

VIII 

IX 

Region 1 

4=Pi(t, 

Recion 2 

Equation 

x - 0 

x ■ c 

x - c + (M+M )at 

x « c + (M-l)at 

x xRSrc + (M+1)at 

M^+2(M+M_)-1 
x ,  2— c + (M-l)at 

(M+MJ (M+l) 
9 

x - —^ c + (M+l)at 

t = 

-M 

2-M 

(Mg-1)(1-M) 

2(M+M) (1+M) 

c 
a 

(M„-l)(1-M) ) ^ 

-M   2(M_+M)(1+M) J ä 

4M 

M[M 2 -l]l/2 

ACn (X^) 
p2 ^p/^^j1-! tan -1 

(M +M)(x-at(M-l)-c)l 

(M+l) (c-x) 

1/2 
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Table 7  (Cont'd) 

AIRLOAD EQUATIONS FOR CASE 4 (M < 1, M < -1) 

Region 3 

Ac  (x,t) - Ac. (x,t) ! - | t.„-^ 
(M+M )(at(l+M)-x] ♦ C(M+1) 

(Mg - l)x 

1/21 

2   M 
IT M (1+M) 

—2—rm+M_) [at(l+M)-x] + C(M+1) 

">1 /? ]/2 

Region 4 

Ac  (x,t) - Ac  (x^t) + Ac,, (x,t) - Ac  (x,t) 
P4        P2 P3        Pi 

Region 5 

1/2 r   -   v   J-/ *" 
Ac„ (X,t) -  ^—-^     *(t Pe -X   J P5 

where 

*(t) » äcn   (xVT,t)    ^i— 
P4 XVI    I c - xVI i 

1/2 

^1 1 + M 
c + (M-l)at 
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Table     7     (Cont'd) 

AIRLOAD EQUATIONS FOR CASE 4   (M  <   1,   M     <   -1) 

Region 6 

Ac     {x,t)   -  f 
Pe l 

c  -  X 
1/2 

mi 

where 

nt) - Äcp4(xvirt) 'Vn 
,1/2 

c - 'Vu 

^11 (M+l)at  - M 
1   -  M 

Region 7 

Mx)a 

(l (M-l)(l-M)| 

S/III  "   iT^M ^  2(M +M) (1+M)1     a 

lc(x)   «  Ac^   (x)   -  Ac     (x.t..-,.-.) p8 p6       "VIII 

Region 8 

Ac     (x)   »  4 
p8 

c-x 

Ld-jru 

1/2 
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Table 8 

AIRLOAD EQUATIONS FOR CASES (M > 1, M  > 1) 

Line 

I 

II 

III 

IV 

V 

Equation 

x - 0 

X ■ c 

x « (M+M )at 

x » (M+l)at 

x « (M-l)at 

Region 1 

Ac 
4M. 

Pl    ' M(Mg
2 -l]l/2 

Region 2 

Ac  (x,t) 
P2 TTM 

M        -1 
COS 

(M2 -l)l/2 

Mx-at(M2-l) 

_^    -i 
 7- COS 
2_i^1/2 (M^-l) 

at(M M+l) -MX 
 2 2_ 

at(M +M)-x 

Region 3 

Acn (t) -  — 
p3      (M2-!)1/2 
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Table 9 

AIRLOAD EQUATIONS FOR CASE 6 (M > 1, 0 < M  < 1) 

Line 

I 

II 

III 

IV 

V 

Equation 

X 0 

X c 

X (M+M  )at 

X (M+l)at 

X (M-l)at 

Region 1 

Acp {x,t) 
TTM 

M 
COS .-1 

Mx-at(M2-l)l 

+ —-3— 
(1-M2)1 (1-M|) iTT 

cosh -1 

Region 2 

Ac  (x,t)  = Ac„ (x,t) 
p2 pl 

Region 3 

Ac  (x,t) 
p3 

4M 
g 

M(l-M2)1/2 

at(M M+l) - M„x 
 2 2_ 
I(M +M)at-x 
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Table 10 

AIRLOAD EQUATIONS FOR CASE 7 (M > 1, M  < -M) 

Line 

I 

II 

III 

IV 

Region 1 

' 4M 
Ac   (t) . a:—. 

Pl       MtM.,2-!)1/2 

Equation 

X . 0 

X - c 

X - c  + (M+Mc r)at 

X m 
M+l 

M+M„ 
C  + (M+l)at 

X m M-l c + (M-l)at 
M+M, 

Region 2 

Ac  (x,t) 
p2 

_4  (    M        -1 
  <—  cos A 

(M+Mg) [Mx-at{M
2-l)}-(M2-l)c 

(M+Mg)x 

M. 

'^^TT COS 
-1 r(M+M  ) { (l+MM  )at-M x}+{l+MM   )C 

(M-  -1) L        (M+Mg){c-x+(M+Mg)at} 

Region 3 

Acp3(t, 
(M2   -I)1/2 
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T    -    51 
c (24) 

(25) 

x Vt -—   +   —-,   leading edge Intercepted first 

e-x    Vt 
-—• + -— , trailing edge intercepted first 

The dynamic pressure q ■ yPjV   and ambient pressure pa 

used to calculate the local pressure on the airfoil are based on the 

preblast values of p^, p^, and V until Ac becomes nonzero. After 

that time, the blast values of p , p and V at the leading edge of 

the airfoil are used. 

(1) Subsonic Flight Speed (M < 1) 

(a) Case 1: M > 1 
m 

The equations for Ac in Case 1 were derived by Smiley 

and Krasnoff (ref. 19). The shock wave first intercepts the wing at 

leading edge and sweeps over the airfoil at a speed greater than sound 

as shown in figure 12. Region 1 lies between the shock wave III and 

the rearward emanating wave IV. These waves, In turn, reflect waves V 

and VI when they reach the trailing edge, forming Regions 2, 3, and 4. 

Extensive calculations are required to determine Ac 

in Region 5, yet the distribution of Ac is rather simple in form, 

blending from the value at reflected wave VI to the zero value at the 

trailing edge. The loading in this region is relatively unimportant, 

so the steady-state distribution for Ac is obtained by seal mg to 

match Ac at reflected wave VI.  When reflected wave VI reaches the 
P 

leading edge, a steady-state pressure distribution exists over the 

entire airfoil. 
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(b; Case 2: 0 < M < 1 
 8  

The solution for Ac for Case 2 was derived by Ruetenlk 

(ref. 14) for Regions 1 and 2.  No solution has been obtained for 

Region 3 due to the coaplexlty of the Interaction between the singular 

distributions of loading In Regions 1 and 2 with the wake. The distri- 

bution of Ac for Region 3 Is obtained by using the steady-state dis- 

tribution for Ac and matching with Ac at reflected wave V. The match- 
P P 

Ing Is accomplished by a linear stretching of the coordinates, based 

on distance from the trailing edge, to match the loading with the 

loading along wave V. The specific equations used are 

Ac (x,t) - (26) 

-       c - x{t) ,    . x " c " T^t)  <c " «> (27) 

with x(t) defined by 

4   /c - x(t) 

^2 V  x(t) V^1 Ac 
'1.2 

(xv.t) (28) 

where Ac   (x^.t) is the value or Ac along wave V for Region I or 2, 

i« ^ 
as appropriate, and x (c) is the chordwise position of wave V.  The 

steady-state distribution of Ac  is reached when wave V intercepts the 

leading edge of the airfoil.  This concurs with the time required to 

reach steady-state as indicated by equation (59), reference 21.  The 

steady-state distribution for Ac applies after wave V intercepts the 
P 

leading edge. 
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(c)    Case 3:    -1 < M    ^  -M 
B 

In Case 3,  the shock arrives from Che trailing edge, 

traveling forward faster than r.he airfoil Mach number but slower than 

the speed of sound.    The wave diagram is shown in figure 14. 

The equations for Lc    for Regions 1,  2 and 3 were derived 

using the transformation from the two-dimensional supersonic steady- 

state wing to the transient one-dimensional airfoil along with the 

equations for the loading given in Section A13,  reference 11.    The load- 

ing in Region 4 is nearly the same as in Region 2, except for a slight 

perturbation from Region 3.    Because  the loading in Region 2  is small, 

the Ac    value for Region 4 is obtained using the equation for Region 2. 

The steady-state loading distribution is used for Region 5, 

scaling the distribution asymptotically,  following equation  (18), 

reference 21.    All values of Ac    in Region 5 are scaled by the factor 

*(T). 

1 - 2^-r (29) 

T   -  f+MTir (30) 

g 

The time factor H')  varies from 0.5 when the blast shock reaches the 

leading edge, to a maximum of 1.0. 

(d)  Case 4: M < -1 
 S  

In this situation, the blast shock overtakes the airfoil 

from the rear at a speed greater than the speed of sound. The equation 

for 1c    for Regions 1 through 4 are taken from Smiley and Krasnoff 

(ref. 19).  In Regions 5 and 6, the equation for the steady-state dis- 

tribution of 1c is matched to Region 4. 
? 
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(2)     Supersonic Flight Speed  (M > 1} 

The equations for all regions In Cases 5, 6, and 7 were 

obtained from table 3 of reference 20. 

3.2    LOADING ON FUSELAGE SURFACES:   PREBLAST AND BLAST ENCOUNTER 

Since the fuselage shape is not known a priori, it is difficult 

to set up a practical, yet rational, procedure for computing the time 

variation of the pressure at an arbitrary point on the actual fuselage. 

The devised procedure is an attempt to estimate the pressures, admit- 

ting the fact that much of It is based on intuition and involves many 

simplifications   (which have been adopted in related situations, e.g., 

see Norrls and Hansen,  reference 22) which may not be fully Justifiable 

for certain configurations. 

If wind tunnel data were available for the particular fuselage, 

such data could be used.    These data would have to Include pressure 

coefficients at a sufficient number of points on the fuselage for a 

range of Mach numbers and Reynolds numbers.    The/ would also have to 

cover a wide range of angles of attack and angles of yaw, and combina- 

tions thereof.    Unfortunately, such extensive data are never obtained 

for actual configurations.    In addition,  the variety of configurations 

encountered prevents the use of one set of data for all configurations. 

Other theoretical means are availible.    Methods have been devised 

to determine pressures on bodies at ^uooonic and supersonic speeds 

for certain types of bodies.    Methods  for subsonic and supersonic 

cylindrical bodies  (e.g.,   refs.  23-26)  are not only limited but also 

extremely  laborious.    They are rejected here on practical grounds 

recognizing,  in addition,  that other aspects of  the problem can only 

be treated  in very approximate fashion.     The Munk-Jones slender-body 

theory or  the linearized supersonic  theory for pointed bodies of revo- 

lution will be of some help.    The Munk-Jones  theory gives running loads 
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per unit body length, ind«p«nd«at of Mach number, and considers only 

those additional pressures due to angle of attack. It has certain 

complications if the cross section is not circular. Both of the slender- 

body theories (Munk-Jones and linearized supersonic theory for pointed 

bodies of revolution) era Mach number independent for the pressures 

Induced by angle of attack. The pressures at zero angles of attack can 

be obtained for the supersonic case; however, they era Mach number 

dependent, and cannot be easily Introduced. 

The point is that neither sufficient data nor well-established 

practical methods exist to perform even the steady-state calculations 

of pressures called for in the present problem for the preblast and 

post-dlftractive phases of the pressure-time histories. The rough 

approximations which are described below appear to offer the best 

solution. 

Consider the two bodies in figure 19, where the actual fuselage, 

(a), and an equivalent body of revolution, (b), have the same cross- 

sectional area distributions along their lengths. For purposes of 

equating the pressures on the two bodies, points on the two bodies may 

be related according to either of the two following schemes 

<*>   h'h~hml 
B 

yb yb 9 -^ 9,  i.e., -2-   4- -H. 

<b>    h-h~h'h 

h  V      'h 
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ACTUAi. SECTION 8 HI 

(•b««B) 

(b) 

MOTt:   Qt ton •t-fr) • WITH -ir<0<ir 

EQUIVALENT CmCULAR 
SECTION  8-i 

(ib.is) 

Figure   19.     AcrjaL and Equivalent  3cd; 
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This Implle« chat th« points which hsve the same slops of the contour 

in the plane section B-B sre related. 

Scheme (b) was chosen, since it results in the proper inclination 

to the relative flow. Selection of the point (SL. y. , z! ) where the 

pressure versus time is desired permits unique determination of the 

related point (x. , y , z ) on the equivalent body where the pressures 

will be obtained. 

The replacement of the actual body by a body of revolution repre- 

sents a very substantial simplification. If the direction of the blast 

is arbitrary, the blast will produce an incremental angle of yaw (a ) 

in addition to an incremental angle of attack. However, these two can 

be combined with the Initial angle of attack (a ) In the preblast pitch 

plane (z. - x. ) to form a single angle of attack in a plane different 

from the pitch or yaw plane. 

Consider the equivalent body and the cross section for a point 

(x_. , y.. , z«. ) where the pressure is desired, as shown in figure 20. 

Note that the body-coordinate system is left-handed with the origin 

at any point on the x.-axis of the body. 

The objective is to find the pressure at point (x.. , y., , z-, ) 

before and after the blast encounter. The pressure-time history will 

be assumed to vary in the fashion shown in figure 21. This is similar 

to the pressure-time history presented by Norrls and Hansen (ref. 22) 

for stationary cylinders encountering blasts. 

The pressure variation spans the following three time ranges of 

interest: 

(a)  Period prior to blast arrival, t < t where t denotes 
— a      a 

the time of shock arrival at (^h' ^h' z2b^ 

The diffraction period, t < t < t., where t »t +t 
a      a       oca 

denotes the time when the flow returns to essentially 
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p(t) 

.DIFFRACTION   PHASE 

DRAG   PHASE 

TIME, » 

Figure 21.     Assumed Timewise Pressure Variation 
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"■teady-stat*" condltlona following blaat «ncounccr and 

t    is th« clearing tin«.    An abrupt Incraasa In pretsur« 

may occur at tin» t    (or t    + e,  c -► 0). 

(c)    Th» po«t-dif fraction phase or the drag phase,  t >_ t.. 

Range (a) Is truly a steady-state period.    Range (c) can be 

treated as steady-state based on instantaneoua free-streaa conditions 

dictated by blast conditions at the point In question.    To construct 

pressure versus time plots like that of figure 21,  the following prob- 

lems need to be resolved: 

1. Determination of the steady-state pressure at the point 

of Interest based on preblast conditions. 

2. The shock arrival time, t , for the point of Interest. 

3. The length of the dlffractive period t  . 

4. The pressure at time t , p(t ). 

5. The pressure at time t., p(t.), based on Instantaneous a    a 
"gust" and "free-stream" conditions at t . 

6. Pressures during the dlffractive period, assuming linear 

variation with time between pressures p(t ) and p(t.). a a 

7. Pressures at selected times t > t., p(t), based on 
o 

instantaneous "gust" and "free-stream" conditions at t. 

Each of these will now be discussed individually.  First, however, 

some preparatory work is needed. Divide the body into three parts, 

as shown in figure 22. The definitions are arbitrarily made so that 

x. is the station at which (dR/dx. ) - -0.15 and x is the station at 

which (dR/dx. ) ■ 0.15, where R is the radius. Pressures on Part (c) 

are not expected to be large, especially for large forward speeds, 

V ; therefore. Part (c) can be treated in a very approximate fashion as 
o 

a portion of Part (b) with (dR/dx. ) > 0. 
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The steady-state pressure coefficient (C ), due to angle of attack 

for the quasi-cylindrical section, is a function of position (x. and 

6) and angle of attack (a)* according to slender-body theory. 

2    dR 4acos a 3— cos9 + a (A) sin a 
2      dR 

dx. 10 

C    (xb,9.a) (31) 

,a(A)  sin a dR > 0 

.7-6        a > 0 

a < 0 

(32) 

1-48in A 0 <_ A <_ ir/2 

aCA)«/-10.278 + 4.6333A        Tr/2 < A <  2IT/3 

-0.574 2IT/3 < A <  TT 

(33) 

The term 4a cos a(dR/dx, )   cose  comes from slender-body theory   (see 

Liepmann and Roshko, reference 23,  page 243, with a    omitted and 
2 

a cos a added to reduce the  total dynamic pressure to dynamic pressure 
2 

based on axial velocity.    The added cos a factor also reduces the 

(dR/dx. )  contribution for large angles of attack.     The a (A)   sin'a 

The angle of attack is defined as the angle between the negative of 
the relative wind and  the body axis x, . 
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term gives the cross-flow drag In accordanc« with Allen and Perkins 

(reference 26).    The constants in the formulas for the circumferential 

pressure variation, a(A),  are chosen so that the circumferential pres- 

sure variations result in a value of 0.35 for the sectional coefficient, 

C., a reasonable value for supercritical Reynolds numbers.     The circum- 

ferential pressure variation, shown in figure 23, matches a typical 

pressure variation along the periphery of a cylinder engulfed in a 

supercritical Reynolds number flow. 

Equations (31) describe the steady-state pressure coefficient for 

the quasi-cylindrical and tail sections of the body, but are not appro- 

priate for the blunt nose section.    The nose section pressures will be 

approximated by using the pressure coefficient at x»x , which will be 

taken as the stagnation point.    This pressure coefficient is a function 

of Mach number, M, only,  and will be denoted by C    . 

(l-m2/5)7/2-l 
0.7M2 

M <  1 

C    (M) 
Po 

/    2\7/2/ v5/2 

(34) 

M > 1 

0.7M 

Consider now the seven problems listed earlier.     The  first is that 

of determining the preblast pressure.    For the quasi-cylindrical and 

tail sections, C    (c <_ t  )  is given by equation   (31),  using the pre- 
P a 

blast angle of attack. 

The determination of  the pressure coefficient  for  the nose section 

is more complicated.    At  the nose point, which is the stagnation point 

for a ■ 0,  C      is applicable exactly at a • 0,  and approximately if i 
o 
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-0.574 * -I  

-3.000  

Figure 23.  Circumferential Pressure Variation, a (A) 
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is finite. The pressure coefficient for a quas'.-cylindrical section, 

C (x.,9,a), is defined by equation (31) where 6 is the same as that 

for point (x^ yb, zb). 

By definition 
•(^) 

- -0.15. Let 

tan ■l(-""J (35) 

tan ■1 /. dR_\ 

\ dxb/xd 
tan"1(0.15) (36) 

The transition from the stagnation point pressure coefficient to the 

pressure coefficient at x. for t < t can be represented by 

(slnö - sind 

l-sln6d 
C 

(37) 

+ C (x.,6,a) 
P a 

The form of equation  (37)   is patterned after the pressure distribution 
2 given by Newtonian flow,  that is,  proportional to sin 6.     The variation 

in pressure coefficient given by equation   (37)  roughly approximates  this 

distribution because C      is substantially larger Chan C  .and sinö,  is 
P0 p' d 

small  in comparison with unity. 

The pressure coefficients defined above are used to obtain the 

pressure in accordance with the equation 

p - p   + q c (38) 
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where p    and a    £       the  free-stream pressure and  dvnamic  pressure. 

Equation   (38)   is appropriate  for   transforming the  pressure  coefficient 

into pressure  tor both preblast and blast  conditions,   provided 

that p    and q    describe the local  ambient  conditions  in  front  of  or at 

some point behind the shock,  as  appropriate.    One note of caution  is 

required in applying equation  (38):   The pressure calculated  by  equation 

(38)   may be negative,  which  is,   of  course,   a physical  impossibiLity. 

If  this happens,  the pressure should be  set equal  to zero. 

Next,   the determination of   the  time of  shock arrival,   t   .   and a 
the  clearing tine,   t   .  must  be  considered.     The blast  characteristics 

routine used  in the NOVA program returns  the shock position  for a  given 

time.     It  is a simple matter,   then     to proceed  in small  timewise  steps, 

calculating  the position of  the  desired point on  the body  relative  to 

the burst point at each step,  and  comparing this with the shock position 

at  the time associated with that  step.     In this way,   the  t^ae of  arri- 

val,   t   ,  can be identified as closelv as desired. a 

Similarly,  the  time at which  the sho-k  first  touches  the   fuselage 

can be  identified.     The  time at which the  fuselage  is  intercepted  t.,   iJ 

needed to define the clearing time,   t   .     Determination of  t.   is  some- 
* c i 

what more cumbersome  than  the determination of t   ,   because a number a 
of points on the fuselage must be considered to identify the time at 

which the shock first intercepts the fuselage.  Basically, however, t. 

is determined in the same wav a& r . 
a 

The clearing time t_ is an artificial parameter which has been devised 

to present the actual pressure versus time in the approximate fashion 

of figure 21.  It may be thought of as a rough measure of the time 

required for the flow r.o return to essentially quasi-steady conditio-'- 

following shock arrival.  Attempts to define t experimentally are 

rather limited and are confined primarily to tests on stationary cylinders 

' i.g-,   reference 27). 
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There   is  soae degree of  arbitrariness  in defining z    because   (a)   the 

diffraccive  pressure variations are  not   generally  linear,   and   (b)   ehe 

scare  of   the  quasi-steady period aay be  very  difficult  to  deceraine. 

Both of  these points are  strongly   influenced by the   location of   the 

point,   the  shape of  the body,   and  the  shock orientation and strength. 

in vhat   follows,   then,   an atteapt   is aade  to  give a  definition of   t 

which will   result   in   reasonable   representations  of   the  diffractive 

phase  pressures.     There  is  obviously no  single approach which ccula 

handle  accurately all  possih'.   :ases   that  aay arise. 

To begin with,  cuvviufer   '::MI    ase  of  a wedge  flying  supersonically 

prior  to  a head-on bla;     «r.. jur.t2r.     During  the  blast   traversal,   the 

snock  pattern has  been  .lotod   to  »e   such   tnat   a   region  behind   tne   shock 

of  approxiaately a^   (t-tj   in width   (a,      ■  speed o:   sound behind  the 

blast   shock)   is  still   in  a  diffractive   pnase   (re!.   29).     Figure   2- 

illustrates   this  point.     Thus,   one  aav   consider   for   the  above   situation 

that   a   "diffraction wave"   starts   traveling  oack   ::OB  tne   shock wave 

at   line   t   .     Tnis wave   travels  at   the   speed  of   sound,   a.    ,   relative   to 
1 DS 

Che shock.  At some tiae t > t , then, the diffraction wave is at a 

distance a. (t-t,,) behind the shock.  Since tne position of the diffrac- 
ts   i 

tion wave can be referenced to the position of the shock front, the 

procedure described above can be used to ieteraine the tiae at which 

the diffraction wave reaches the desired point, t .  The clearing tiae, 

t , is then siaplv the difference between t , and t . 
c da 

If   this   analytical   definition   for   t     is   acopted   for  bodies   flying 
c 

at  different   speeds,   and  encountering  blasts   from arbitrary  orienta- 

tion«,   soae  problems   arise.      First   consider   the  case  of  a  cylinder 

which   is   intercepted  side-on  bv  a   shock  wave.     The  above  definition  of 

t     results   in  a  clearing  tiae  of   zero   for   the  extreme windward  points, 
c 

since   c.   and   t     are   identical   for  such   points,   and  therefore,   the 
la 

diffraction wave also arrives at  t     (t.  »  t   ).     Tests  on  scaled missile 
ad   a 

models in the DASACON shock tube (ref. 2~)   however, indicate that 3 
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clearing time of about (IR/a,   ) Is appropriate, parclculai'y for points 

on the windward side which experience the highest pressures. Accord- 

ingly, the adopted procedure Is to determine t as described earlier, 

and to use the larger of that value or (2R/a. ). 

The second problem which arises may be illustrated by the case 

when the blast arrives directly from the back and the vehicle velocity 

nears the value V - a, , where V is the velocity of the shock front, s   bs       s 
■yr such cases, the clearing time (t ), as defined above, becomes 

unreallstlcally high.  No experimental results are available to establish 

an upper limit on t  in a manner such as that used to establish the 
c 

lower limit.  The value of (6R/a, ) has arbitrarily been chosen as the 

upper limit of t  in the program. 

To determine the pressure at time t , it is necessary to define 

the orientation of the shock front relative to the fuselage local sur- 

face normal.  When t  is determined, as described previously, the shock 
a 

orientation in jpace is automatically available.  The unit vector 

normal to the shock, in the direction of shock propagation, will be 

designated by n .  The unit vector normal to the body and directed 

inward is given by 

-    ,-    dR   ~     J            ~              *      1 , -,,> n, ■ (i, j JvSinc - it, cose)  ,              (39) 

where i, , j. , and k, are the unit vectors in the 5t, , y  and z. direc- 

tions, respectively.  Defining a new coordinate system, x, y, z, which 

Is related to the x, , v. , z. svstem bv a rotation —i    about the v, 
b   b   D  ■      ' o ■ b 

axis, so that the x axis is horizontal. 
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i~— cosa    + cosösioo   ) 
d^ o o J   sin 

•♦• k   (i— sina    - cosdcosa  ) 
d^ 

VMS-) 
(40) 

where i, J, and k are ehe unit vectors in ehe x, y, and z directions, 

respectively. 

If the conponents of n (the unit vector normal to the shock in 
s 

the direction of  shock-front propagation)   in the x,  y,  z directions arc 

n   ,   n   ,   n   ,   respectively,   then   the   shocic  plane   and  tne  plane   tangent 

to the fuselage body sake an angle 

sb 
cos     (n,    .  n  ) 

cos .) 

I« dg 
,dR n     (-— cosa    + cos-sma   ) 

x    dx. o o 

.dR -n  sine -t- n    (-— sina  -cosocosa   ) 
y z    dx, o o 

0 < e . < 
- sb - 

(41) 

If the vehicle has no component of its velocity V normal to the surface, 

then the theory of plane shock reflection from a stationary plane sur- 

face can be used.  This would be nearly true for regions where dR/dx. 

is small, i.e., in quasi-cylindrical portions.  For high !dR/dx, 

regions, i.e., the nose section, this would not be strictly applicable. 

In fact, with "blunt" bodies in supersonic flow, there is a shock-shock 

interaction problem which is not easily included. 
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In the absence of a better practical procedure for such regions, 

the reflection theory of a plane shock on a plane stationary wall will 

be used.  Sorris and Hansen (ret. 22) give Ap/Ap as a function of 

?  , where lp is the increaental pressure on the body and Ap is the 

shock overpressure.  Ap/Ap versus 9  is dependent on the pressure 

ratio across the shock.  The curves of Ap/Ap versus 9  exhibit buaps 

in the neighborhood of transition from a regular reflection to a Mach 

reflection.  These buaps have not been observed experiaentally on circular 

cylinders.  .larher than use the curves in Sorris and Hansen directly, the 

approxiaation depicted in figure 25 is used.  The curve shows constant 

-p/-p. for 0 ■ 5 ■ - "/■•, and linear variations of -p/-p with '•  . between s      — so— s     sb 
■'-. and ■/2, and between "/2 and ". 

In figure 25, the parameter r is the reflection factor for normal 

incidence, ard is given by 

p  ♦ 1/7 Ap (42) 

Thus,   referring  to figure  25, 

o < e     < 1/4 
—    so — 

r    +  (1 
P Vl^TT-) —   <    -i <    T/ 2 

4 sb -    ' (43) 

1.5  - 
sb 

—  <   ■i        <   T 
2 sb - 

The pressure at   c     is  then determined  from a 
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pu^.pu;)*^-) .p. (44) 

where p(c~)   is the pressure just before shock arrival, or ehe original 

steady-state pressure  froa equations   (31)   through  (38). 

Next,  consider  ehe pressure at the end of  the diffraction period, 

p(t  ).     Fro« the blast  routines and the range and orientation of the 

point  in question relative  to the hurst point,   the aabient density, 

-   (c.), pressure,  p   (t.),  and aaterial velocity components, w  (t.). ■    a *    a x    a 
w  (t.),  and w  (t.).  are known.    The x,  y,  z coordinate systea is that 
yd z    c 

described in connection with equation  (40).     The  total velocity is, 

then. 

W     -%(Vo- W1' +  ^y
(td)1    *   (Wz(Cd)1' (45) 

To find the angle of attack of the section containing the point in 

question, the total velocity of the air relative to the body is resolved 

into components in the x, . y. , z. , body coordinate system. 

\ 

(V - v )   cosa + w  slna ox     o   z    o (46) 

VT   -  Wy 
yb 

(47) 

V,   ■  (V - w ) sina + w cosa I        ox     o   z    o 
Zb 

(48) 

The flow is then inclined at an angle y from the z, axis, where 
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can -1 --/: (49) 

An effective 9 nay be defined as ehe angle becveen ehe flow and the 

point in question.  Calling this angle 6, 

e 5 e - Y (50) 

To aaintaln 6 in the Interval -f ■» •», If 9 > ^, subtract 2', and if 

6 < -w, add 2*.  Finally, the angle of attack is given by 

a ■ tan 

V_  slmr ♦ V_  COSY 
i I 
yb        zb 

72 < i < n (51) 

Equations (31) through (38) are used with " replacing 3 to find 

pit.).  Note chat, if a nose point is involved, there is an implicit 
a 

assumption chat V   <  0.  Also, for a nose point, the flow parameters 

\ 
co be employeH fnr ehe stagnation point, including the Mach number in 

equation (31), and for x. ■ x. . arä those corresponding co the poinc 

in question. 

Pressures during Che diffraccion period are found by linear incer- 

polaCion. 

P(e) - P(e+) +1^ ) (td) . p(t+3J   Ca . c _cd (52) 
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For claes greater than t , the pressure at a point is found in 

precisely the saae way as p(t.); that is, equations (45) through (51) 

are used, with t > t . replacing t., and the parameters so defined are 
a d 

used with equations (31) through (38) to obtain the pressure. 

The foregoing procedures serve to define coapletely the pressure- 

tiae history for a point on a fuselage with a straight centerline, due 

to a single shock.  Modifications necessary to acconaodate a nonscraight 

centerline and a double shock will now be described. 

The coaputer prograa permits the centerline of the fuselage to be 

described by two straight lines, as shown in figure 26.  The bend 

occurs at x. - x__, which is assumed to be aft of the transition point 

from the nose section to the quasi-cvlindrical section, x..  All of 

the preceding procedures remain valid, as long as the initial angle of 

attack is defined bv 

o„ *h  > ^F r'F 

v^ (53) 

*       -  i x, < x_, 
< o- b   Br 

If the aircraft is intercepted by the blast wave at a point just 

above the triple point, a second shock will follow closely behind the 

first.  The pressure-time history for this case is shown in figure 27. 

Subscripts 1 and 2 are used to identify the first and second shocks, 

respectively.  Prior to the time t  , the pressure is, of course, given 
a2 

by the procedures already described.  The jump in pressure at time t 
a2 

is (Ap/Ap ) Ap  .  The shock overpressure Ap  , for the second shock 
S2   a2 S2 

is obtained from the blast routine and (Ap/Ap ) is obtained from 
S2 
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equations (42) and (43) using Che ambient pressure corresponding to time 

t  for p^.  The pressures at t  and later are given by procedures 

already described, using flow parameters from the blast routine for the 

doubly shocked air.  The only remaining point requiring definition is 

p(t  ) for t  < t  . 
dl      a2   dl 

t  - c 

P(t ) - pl(t ..^(c^-pu-))--!—^ 
1 1        2       2     d.   a. 

(p(t* ) 
a2 

■P(t^)) - (p(td2) - p^)) 
a2   dl 

(54) 

The quant .ty p. (t, ) in equation (54) is the pressure that would exist 
1 d1 

at time C  in the absence of the second shock and p.U, ) is to be 
Qi 1  d2 

interpreted   Unilarly.     Linear variations in pressure are assumed  from 

t       to  t,    and from t,    to t,   . a2 d1 d1 d2 
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SECTION IV 

STRUCTURAL RESPONSE TECHNIQUES 

The structural elements of an aircraft vehicle susceptible to 

overpressure damage consist of the following: 

1. Stringers on the fuselage or on lifting surfaces 

2. Longerons or frames on the fuselage 

3. Single-layered or honeycomb panels on the fuselage or on 

lifting surfaces 

4. Acrylic, glass, or plexiglass canopies 

5. Multilayored radomes 

6. Rib webs on lifting surfaces* 

Two structural response codes were developed for predicting the 

elastic and inelastic response of these structural elements to the 

overpressure loading associated with the blast wave.  The first of these 

response codes is called DEPRÜB for Dynamic Elastic Plastic Response of 

Beams and was developed for use with stringers, longerons, frames, ribs, 

and also for conical or cylindrical shaped radomes which may be repre- 

sor.ted bv a ring. The second of these response codes is called DEPROP 

for Dynamic Elastic Plastic Response of Panels and was developed for use 

with single-layered and honeycomb panels, canopies, and certain radomes. 

Provision is made in each code to determine the static preblast 

solution due to internal pressurizaticn and ?erodynamic loads on the 

structural element.  This steady-state solution then provides the 

initial conditions for the dynamic response associated with a time- 

dependent blast wave.  The formulation for each of the two response 

codes is described in detail in the remainder of this section. 
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4.1 DYNAMIC ELASTIC-PLASTIC RESPONSE OF BEAMS - DEPROB 

The structural response program DEPROB calculates the static and 

dynamic, elastic or elastic-plastic, response of aircraft elements which 

can be modeled as beam or ring elements. These elements can have 

arbitrary spanwlse shape, can have arbitrary cross section involving 

different materials and varying spanwlse along the beam, can have any 

combination of boundary conditions— clamped, simply supported, or free— 

and can respond to a transient pressure function which varies with both 

time and spanwlse position. 

The basis for the code is a finite-difference method developed by 

MIT (refs. 29 and 30) to predict the deformations of a circular ring to 

Impulsive and transient loadings. DEPROB represents considerable modi- 

fication and extension of the capabilities of that original effort.  The 

remainder of this section will describe in detail the DEPROB code. As 

partial verification, the final portion presents comparisons of the 

dynamic response of two clamped beams tested experimentally and analyzed 

by DEPROB and by the MIT code. 

4.1.1 Basic Theory 

The finite difference technique applied to two-dimensional 

structures in DEPROB assumes a spanwlse model consisting of a series of 

discrete masses interconnected by straight, weightless bars, as indi- 

cated in figure 28.  Beams with variable geometrical cross section in 

the spanwlse direction are reduced to a series of links, each completely 

uniform.  Each bar and mass then has its own material properties.  Beam 

response to externally applied forces is computed at each mass point. 

The actual cross section is idealized by introducing a set of 

discrete points called flanges.  These flanges have normal stress 

distributions, and are interconnected by material of infinite shear 

rigidity as Indicated in figure 29. Flange elongations are governed by 

the Bernoulli assumption chat plane sections remain plane. 
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Figure 29.     Actual  Cross Section and an  Idealized  Representation 
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The stress-strain curve of each layer of material Is modeled 

by a series of straight lines, as shown In figure 30.  Enough straight 

line segments will, In the limit, describe any curve. The curves may 

dlft^.L' In tension or compression, except for the elastic slopes (segment 1), 

which must be the same. However, the yield stress, defined as the break 

point stress at the end of the first segment, may differ In tension and 

compression. 

A more complete description of the theoretical development of 

DEPROB Is now presented in subsections 4.1.2 to 4.1.11. 

4.1.2  Equations of Motion 

The governing equations of dynamic equilibrium take the form 

|- (N cos 9) - |- (Q sin 9) + F - mV - 0 
9s 3s y 

|- (N sin 9) + |- (Q cos 91 + F - mtt - 0 
aS öS Z 

and, ignoring rotary inertia, 

f-Q-0 
3s  ^ 

Referring to figure 28, the corresponding finite difference equations 

are, for the ith mass point, 

Ni+icos9i+r
Nicos6i-Qi+isinei+i+ Qisinei 

Asi + Asi+r 
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Figure  30.     Idealized Stress-Scrain Curve 
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N:i+isin9i+r
Ni3in9i+ Qi+icosei+i 

/As    + As      \ 
-Q1cos9i + F^ [ -2 )- m1Ui - 0     (56) 

M, - M. . - Q, As. - 0 
i   i-1   1  i 

(57) 

where, from geometrical considerations, 

Asi - [(vi-  v^)2 + (wi - w^)
2] 1/2 (58) 

sine 
w - w 
i   i-1 

i    As, 
(59) 

cose 
V  — V 
1   i-1 

As, 
(60) 

The fundamental variables entering into the above equations of motion 

are defined as follows: 

N 

Q 

M 

9 

As 

m 

v 

internal axial force 

internal shear force 

internal moment 

angle between y-axis and bar 

length of bar 

discrete mass 

position in the y direction 
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w   ■   position in the z direction 

F   •   external force per unit length in the y direction 

F   ■   external force per unit length in the z direction 

The double dot over the variables v and w represents double differentla- 
2 

tion with respect to time, i.e., V *• d (v)/dt.  Since each mass point 

must be in dynamic equilibrium at all times, equations (55-57) must 

apply to all points, 1 *■ 1,N, where N is the total number of masses in 

the model. 

The numerical procedure for solving equations   (55-57)  is to 

first find all Q^s from equation (57),  then find V.  and V.  from equa- 

tions  (55)  and   (56),  respectively.    Determination of N.,  M.,  F    , 
yi 

F      and m, will be explained in Subsections 4.1.3 to 4.1.8,  and the 

temporal integration technique used to extrapolate quantities to the 

next time step is described in Subsection 4.1.10. 

4.1.3    Variable Cross  Section 

For beams of variable cross sections where the width and 

thickness of any of the layers varies spanwise along the beam, a set of 

cross sections is developed where each corresponds to a particular bar 

in the bar-mass model  (fig.   28).    The width and  thickness is Initially 

specified at each mass point and each end of the beam.     From that 

information uniform cross sections  (width and thickness  remaining 

constant)  are generated.     These uniform segments extend from one mass 

point to the next and  the   idealized dimensions of each are  found by 

averaging the dimensions at either end. 

Variations are assumed to be small so that laterally applied 

external pressure loads are assumed to act normal to the beam as located 

by the mass points.     In other words, the local variations  in surface 

orientations are neglected  in determining the direction of  the load 

vector. 
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4.1.4    Idealized Model of the Cross Section 

The creation of an idealized model of the actual cross section 

requires first reducing the cross section to a set of uniform, rec- 

tangular layers,  as shown in figure 29.    Each layer, however, can have 

different physical properties as well as different geometric properties. 

The second step in modeling the cross section is to represent each layer 

by a set of one or more flanges in order to represent  the extensional 

and bending stiffness in the layer.    The more flanges used,  the more 

accurate the representation,  but at the expense of additional computer 

time.    Hence,  the number of  flanges and the spacing within each layer 

must be optimized. 

» 

It should be noted that for a beam with nonunilorm cross 

section in the spanwise direction the cross section at  the center of the 

beam is modeled  for the desired number of flanges and  flange spacing 

and this flange representation is used for the entire beam.    To do 

otherwise would be exceedingly complicated,   resulting in little addi- 

tional accuracy.    This assumption does not significantly affect the 

ability to analyze nonuniform cross sections. 

The number of  flanges allotted to each layer of material is 

determined on the basis of bending of a composite beam.     The number of 

flanges in a layer is allotted approximately in proportion to the elastic 

modulus,  E,  and  the width,  b,   for the layer,   the depth,  h,  of the layer. 

Because the.  thickness plays  a more important  role in bending,  the number 

of  flanges is actually determined by h(Eb)   '     .     The allotment is not 

exactly proportional  to   (h(Eb)   '     )  for each layer since  this would 

result in fractional numbers  of  flanges.     Actually,   in  the computer 

program,  the number of  flanges  for each layer is obtained by selecting 

an even number n  (2,  4,  6,...)  for the layer with the  largest value of 

(h(EB'   *     ),  calculating a number n,   for each layer  "k"  from 

MW0'" 
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and rounding n,   to Che nearest even integer, or if less than 1.5,  n    Is 

rounded to 1.    Even   integers  are preferable because  the bending  stiff- 

ness of each layer of material can be represented more effectively with 

a minimum number of flanges.     The reasons for this selection are more 

readily apparent  from the discussions which follow on the area and 

spacing of the flanges. 

The area and spacing of the flanges in each layer are evalu- 

ated from considerations of both the extensional and bending stiffnesses 

of  the cross section.     It  is desirable,  if possible,   to duplicate the 

bending and axial extensional stiffness of the entire cross section 

through all phases of stress;  elastic,  elastic plus plastic, and all 

plastic.    It is impossible to duplicate all possible elastic plus 

plastic stress conditions without the use of an infinite number of 

flanges in each layer of material.     It is possible, however,   to repro- 

duce easily the normal force,   N, and the moment,  M,  resulting from the 

following strain conditions: 

1. Any purely elastic strain 

2. Purely plastic axi-l strain 

3. Purely plastic bending strain 

Satisfying the above strain conditions guarantees  that any strain condi- 

tion will be reasonably well reproduced. 

For a multilayered beam,  if  the elastic extensional and elas- 

tic bending stiffnesses of each layer of material of  the  cross section 

are  reproduced,  all  three of  the strain conditions  listed  above are 

correctly created.     Figure 29  illustrates  Che acCual cross  seccion for a 

multilayered beam and the  idealized  flange representation of  the cross 

section used in the computer program.     In the  idealized representation 

Che  flanges  in a layer are of  .-.qial area and are discributed   symmetri- 

cally about  the cencerline of   the layer.     The elastic  extensional  and 

elastic bending stiffnesses are reproduced by the  following area and 

spacing of the flanges: 
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(62) 

(63) 

where 

b, 

k 

"k 

k 

the area of each flange in layer "k" 

width of layer "k" 

spacing between flanges in layer "k" 

the height of layer "k" 

the number of flanges in layer "k" 

the kth layer 

As pointed out earlier, this representation is based on an even number 

of flanges for each layer of material. Actually, the uniform spacing 

between flanges could be based on a symmetrical distribution of flanges 

about the centerline of the layer, with one flange located on the 

centerline.  This representation is not desirable because the flange 

located at the centerline is ineffective in reproducing the elastic and 

purely plastic bending stiffness of the layer. 

The one exception to the spacing formulas (63) is when only 

one flange is assigned to the layer, in which case the flange is located 

at the center of the layer and d. » 0. 

The strain for pure bending is zero within some layer of the 

cross section.  Therefore, the correct representation of the purely 

plastic bending condition is obtained by dividing the layer in which the 

strain is zero into two equal layers.  The dividing line is the zero 

strain axis, and both layers have identical material properties.  The 

flange area and spacing are determined as before except that the ideal- 

ized cross section contains L+l layers instead of the L layers of the 
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actual cross section.     This approach is very useful for a single-layer 

cross section because the two layers are positioned symmetrically about 

the centroldal axis.    Representing the elastic bending stiffness of each 

layer by flanges distributed symmetrically about the centerllne of each 

layer reproduces both the elastic bending and purely plastic binding 

stiffnesses of the entire crosti section. 

The Internal bending moment  for the cross section Is deter- 

mined by using the reference axis in figure 29.    The inertial  forces are 

also based upon accelerations at  the  reference axis;   therefore,   the 

reference axis is located at  the center of gravity of  the cross  section. 

I>i + ---+hk-i + :r) \\hv 
k-1 

eg 
(64) 

ZPkV 
k-1 

where 

eg 
the location of the centroldal axis (reference axis) 

with respect to the base of the cross section 

P.  ■   the mass density of layer "k" 

L   *   number of layers in the cross section 

and the other variables are as defined earlier. As indicated in figure 

29, the distance from the center of gravity co the rth flange located in 

the kth li_yer is depicted by c , and represents the bending moment arm 

for that flange.  In the case of variable cross section, the parameters 

A, , d, , c,  and X  will all depend on spanwlse position, and henceforin 

the subscript "i" will be attached to them to indicate that dependence. 
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4.1.5    Strain-Displacement  Relations 

Referring to figures 28 and 29 again,  the finite difference 

equations  representing the strain-displacement relations  for  the  rth 

flange in  the cross section at  segment  i are given by 

As,   - As, i i^o 

N 
As 

i.o 

A9.,   -  AB. 
i ^o 

A9 
i-1 

AG i-l.o 

As 
i.o 

As t-1,0 

(65) 

=        —— 
'Si        2 

As,   - As. As. .,   -  As. ,, i ito i-f-l i-H,o 
As, As,,, i,o i+l,o 

2   ui      ^i+l; 

As 
i,o 

(66) 

where 

As 
i.o I (Asi,o + Asi+l,o) (67) 

A9i    .    9i+1-9i 

sin    (sin9.   -cosö -cose,   .sinö) (68) 

and 

eM  a strain used  to  compute  the internal   force,   N. 

e„  = strain used  to  compute  the  internal moment,  M. 
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The change of angle at mass 1,  A9   ,  Is computed from the Inverse sine 

formula since the sines and cosines are already available   (eqs.   (59-60)). 

Likewise, As.   is available from equation  (58).    The subscript "o" refers 

to the unstrained conditions. 

The two distinct formulas for computing eN and eM arise from 

discretization - the fact that the internal force is computed in the 

ith bar;  the moment is computed at the ith mass.    Once the stresses, a, 

are calculated based on the strains,  the   force and moment are the result 

of the following summations over all the flanges: 

N,    »  >    at      At (69) 
i IX < 

"l    "    *    IX   (AI + Ai+1HC1 + 'W (70) 

The following section describes  the stress-strain relations. 

4.1.6    Stress-Strain Relations 

The stress-strain model,  depicted in figures 30 and 31,  con- 

sists of a set of piece-wise linear segments defined at coordinates 

((e   ,a, ),  k ■  l,2,...n).     This uniaxlal curve may be different  in ten- 
k    K 

slon and compression,  although the initial slope,  o./e-,   is constrained 

to be the same in the following mathematic model. 

In order  to  incorporate strain hardening and elastic unload- 

ing and reylelding,   a "mechanical  sublayer" model  is adopted   (ref.   31). 

This model is based on kinematic hardening   (in a uniaxlal sense) which 

takes  the   Bauschinger effect  into account   (see figure 32). 
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Figure  31.     Schematic  of Mechanical  Sublayer Stress-Strain Model 
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(a)    Elastic-Perfectly Plastic Cycle 

(b)    General Loading Cycle 

Figure  32.    Cyclical  Scress-Strain Load Fachs 
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Each flange In the program Is conceptually broken down Into 

several subcomponents, or "sublayers".  Each of these sublayers behaves 

in an elastic-perfectly plastic manner and each has the same modulus of 

elasticity, E, but each has a distinct fictitious yield stress associa- 

ted with it, a..  The value of a, is simply given by 

- Ee, (71) 

Once the stress in each sublayer is found from its own elastic- 

perfectly plastic model and the strain, c, the total stress can be 

determined by summing over each sublayer after weighting the stress 

in each sublayer by an appropriate weighting factor. This weighting 

factor simply takes into account the fictitious yield stresses used 

in the model. 

where 

k-1 

ck ak(e) 
(72) 

^1"^ 
(73) 

and 

\ Wi 
< Wi 

k-1 

k-2,3, 

k-n+1 

(74) 
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In the case of an elastic-perfectly plastic material, there Is 

only one sublayer. In general, each distinct slope of the stress-strain 

model In the entire tension-compression regime will dictate a unique 

sublayer, except for zero slope segments, which are automatically 

accounted for.  The method makes two assumptions: 1) the modulus of 

elasticity Is the same In both tension and compression, and 2) the break 

point stresses Increase for Increasing strain. 

For problems Involving complex cyclical load paths where 

points may unload, reyleld, unload, etc., the method provides a very 

convenient mechanism to follow this behavior as only elastic-perfectly 

plastic curves are ultimately Involved.  It Is also of note that the 

computation of the weighting factors, c. 's, need only be performed once 

since they are Independent of time. 

4.1.7 Boundary CondltIons 

DEFROB has the ability to analyze any combination of clamped, 

simply supported, and free edge conditions, including a symmetric 

"edge", where only half of the beam or ring is analyzed when the beam 

and its external loading are symmetric about the center.  Each of the 

edge conditions is discussed below and the appropriate equations 

presented. 

Clamped Edge 

An ideal clamped edge condition is assumed, where zero 

deflection and zero slope are assumed at the clamp, as indicated in 

figure 33(a). 

According to finite-difference techniques, the zero slope 

constraint would best be approximated by including at least one mass 

very near the edge, so that the zero slope constraint is maintained in a 

very localized region.  For large deflection problems dominated by 
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(a)    Finite Difference Model 
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(b) Quasi-Static Model 

Figure 33.  Clamped Edge Models for Tine > 0. 
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membrane forces, however, a large stress conceroration occurs near Che 

clamped edge and results In very large computational times due to the 

additional masses but, more importantly, also due to the small time 

increment thereby required in the solution.  The time increment, At, as 

will be seen in subsection 4.1.10, is proportional to the shortest link 

in the model. 

A new technique has been applied which eliminates these 

problems, with computational time on the order of ordinary finite- 

difference calculations, yet permitting a much higher degree of accuracy. 

This is accomplished by subdividing the segment (bar) nearest the edge 

into 10 unevenly spaced subsegments, with the subsegments more closely 

spaced near the edge.  These subsegments are not used in the finite- 

difference equations, however.  Instead they are the basis of a static 

solution, where, through an iterative process, the forces and the moment 

at the end of the first segment are found at each instant of time by 

satisfying the end deflections and an end slope condition. The use of a 

static solution is equivalent to ignoring the mass of the first bar, 

which is consistent with the discretization used throughout. 

Figure 33(b) shows the relative advantage of this method 

over the previous method indicated in figure 33(a).  The new method 

permits a more precise solution between the clamp and mass point 1, as 

it is allowed to deform with the rest of the beam. 

When the beam is initially modeled, however, the first 

segment must: be oriented perpendicular to the assumed wall, as shown in 

figure 34(a).  It is appropriate that the length of that segment be on 

the order of other segments in the beam.  Either or both of the ends of 

the beam can be clamped. 
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(a)     Clamped (b)     Simply Supported 

^/2 

>.y 

(c)     Free (d)     Synnnetrical 

(N-H) 

(e)    Free Ring 

Figure 34.  Edge Conditions for Beam 
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Simply Supported Edge 

A no-slip,  knife edge   (hinge)  condition is  imposed by 

requiring no deflection and no moment at the edge.    As shown in figure 

34(b),   it is appropriate to Initially model the beam with the segment 

nearest the edge approximately the same length as other segments in the 

beam.     Either or both of  the ends of  the beam can be simply supported. 

Free Edge 

The free edge is characterized by zero moment and zero 

internal force in the outer bar. As indicated in figure 34(c), that 

outer segment should be roughly half that of other segments in the beam. 

Either or both of the ends can be free. 

In the event that both ends are considered free, the 

structure can be analyzed if the center of gravity remains stationary 

and no rotation is introduced. The net translation and rotation of the 

bean are accounted for by calculating the accelerations responsible for 

this motion and subtracting them from the left-hand sides of equations 

(55) and (56). The rigid body accelerations v and w associated with 

translation are calculated from 

N 

F 

^ 1-1    ^ 
VT    "    —M  (75) 

N 

F 

w. T    " M (76) 
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where 

M - Yimi 

i-1 

The rigid body rotational acceleration is determined from 

where 

N 

2 miri 
i-1 

(77) 

(78) 

(79) 

2 - 2       - 2 
r  »  (v - v) + (wi - w) (80) 

r 
i=i 

m. v. 
i i 

M 
(81) 

2 miWi 
w 

i=-l 
M 

(82) 

i-1 

(v -v)F  - (w - w)F 
i yi 

(83) 

-102- 

■MHa mtmmm ...... J- ^. . ^ — ^   ...^ :., . . 



WIII ii i mns 

The coordinates v, w represent the coordinates of the center of gravity 

of the system. Finally, the y and z components of acceleration due to 

the angular acceleration are, respectively, 

\- -9' <wi "") (84) 

w^- 9 (v1 - v) (85) 

The total rigid body motion Is formed by adding the contributions from 

eq. (75), (76), (84) and (85). 

Symmetric Eogg 

When the beam and Its loading are both symmecrlc about 

the center of the beam, only the first half need be analyzed.  The pro- 

gram will automatically rotate the structure so that the plane of sym- 

metry Is parallel with the vertical (z) axis in figure 34(d).  A ficti- 

tious mass (N+l) is constrained to move as a cirroi image to mass N, 

thus enforcing zero slope and symtaccrlc motion abouv: the plane of 

symmetry. As Indicated, the segment nearest the  plane of symmetry 

should be only roughly half the length of other segments, because its 

mirror Image Is an equal distance on the other siae. 

Free Ring 

As indicated in figure 34(e), the free ring must be 

modeled symmetrically, but is assumed to close on itself.  The program 

then rotates the structure so that the plane of symmetry is parallel to 

the vertical (z) axis.  As was the eise with a free-free beam, rigid 

body rotation and translation are subtracted out of the solution, leav- 

ing motion only relative to the time dependent e.g. of the system. 
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4.1.8    Elastic  Support at Discrete Points 

The flexibility of DEPROB, particularly the ability to apply 

external loads to discrete mass points,  lends itself  to  the analysis of 

three special structural configurations of interest.     They are 1) a 

relatively weak frame situated between other relatively strong frames 

and deriving support  from the connecting longerons and stringers,  2) a 

frame deriving support  from outer skin when internally loaded  (preblast) 

and  3)  stringers and  longerons deriving support  from outer skin as in 

(2).     Each will be discussed below. 

A weak frame may derive elastic support from a longeron at the 

point at which the two structures are joined. The frames are assumed to 

be evenly spaced such that the stiffness coefficient associated with the 

longeron is given by 

where 

E'      ■        modulus of elasticity of  longeron 

I'      =        moment  of  inertia of longeron 

i'      ■        length of  longeron between strong   frames or 

bulkheads 

The  frame,  analyzed by DEPROB,  will then receive a restoring force pro- 

portional to the displacement  6  and applied to  the  frame at  that point. 

This  technique obviously excludes  dynamic coupling of  the  two eldments 

but  should be a reasonable  approximation,  particularly  for  the weak 

frame situation. 

When a frame element  is  subjected to   i net  outward preload 

pressure due to  internal  pressurization of  the  fuselage,   the  outer skin 

makes a very significant  hoop stress contribution in  resisting outward 
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deformation that would not be properly accounted for when modeling the 

skin as part of the frame cross section. In order to correct for this, 

the tensile stress-strain curve is modified within the program to take 

into account the larger effective skin area whan the outer layer is in 

tension. 

For fuselage stringers and longerons under net outward preload 

pressure, a different approach is taken to correct the same problem that 

existed with the frame.  In this case, a cylindrical section of aircraft 

skin actually contributes to the hoop stress strength of the structure. 

The restoring force at each point along the stringer can be shown to be 

approximately proportional to the deflection of the element: 

0 6^0 

(87) 
6 

-2Ee h sin -^ 6       6 > 0 
s     2 

where 

E   -   modulus of elasticity of skin 

h   ■   thickness of skin 

9   =   angular spacing between stringers around the fuselage 

4.1.9 Preload Static Solution 

The method chosen for solution of the preblast deformations 

due to steady-state loads is an I. native relaxation procedure designed 

to reduce the accelerations to zero.  Once this equilibrium state is 

reached, the displacements are stored in the program so that a change of 

blast range or orientation will not necessitate solving the preblast 

problem again. 
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Due  to the complexity of  the solution   procedure,   the static 

solution is found for only seven boundary condition combinations.     These 

should, however,  solve any practical aircraft problem.    The allowable 

combinations are 

1st End 

Clamped 

2nd End 

1) Clamped 

2) Clamped Free 

3) Clamped Symmetric 

4) Clamped Simply pt-pported 

5) Simply supported Simply supported 

6) Simply supported Symmetric 

7) Free ring 

4.1.10    Numerical Analysis 

Integration of the second-order differential equations 

(55-56) is accomplished numerically by extrapolating the 2N displace- 

ments v. , w in time. The integration used is the central difference 

formula 

Vi -  (AC) \ + 2\-\-i (88) 

where 

X represents one of the 2N displacements 

At is the time increment 

k denotes the time step, 0,1,2... 

Note that step zero corresponds to static conditions just after the 

blast has arrived but before the structure has responded.  In order to 

start the procedure, the back point X 1 must be established.  This is 

done at step zero by letting 
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X^ - Xo + 1/2   (At)2 Xo (89) 

The central difference  formula  (88)   Is known as an open 

method.     For elastic problems the solution will be accurate,   for all 

practical purposes, as long as the solution remains stable.    Too large a 

time increment, however, will trigger a numerical instability.    Stability 

can be related to longitudinal and lateral vibration frequencies of  the 

beam (ref.  30).    These criteria depend on the material properties and 

the geometry,  including the spacing between adjacent mass points.     For 

multllayered beams,  average material properties are computed;  and for 

beams of variable cross section, each station along the beam is checked 

to find the critical At.    The following equations represent the At 

criteria, where the minimum value  (when all links i-l.N are considered) 

is appropriate: 

1.0 

(90) 

I yfl n As    . 
I o^i 

V^Thi 

where n is  the maximum number of  flanges assigned to any layer,  h is  the 

total thickness of the cross section,   and 

I^Pkhk 'kbk 

E       ='      L 
(91) 

1   Evk bk 
k-l 
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The constant r has as a value a theoretical upper limit of 1.0, but a 

conservative value of 0.9 Is used to avoid marginally unstable cases. 

It should be noted, however, that Initially curved beam elements which 

experience "snap-through" buckling may require a significantly smaller 

time Increment than that predicted by the above formula. 

For solutions which go Inelastic, and for column buckling 

types of problems, the solution may deteriorate without actually diverg- 

ing.  For these cases It Is recommended that particular attention be 

paid to the validity of the results.  This can easily be checked by 

using a time Increment somewhat smaller than that previously used and 

comparing results. 

4.1.11 DEPROB Response Comparisons with Experiments and with an 
MIT Code 

As partial verification of the DEPROB code, the dynamic 

responses of two clamped-clamped uniform straight aluminum beams, sub- 

jected to Impulsive loads on the center portion of the span, are pre- 

sented In table 11 and figures 35 and 36. Deflection time histories are 

shown for each beam as determined by 1) DEPROB calculations, 2) exper- 

iment (ref. 29), and 3) MIT beam code. 

These particular beam tests were selected due to the rela- 

tively good experimental data and because of the Inelastic nature of the 

response.  The second beam is nearly Identical to the first except it is 

twice as thick and does not exhibit as much strain hardening as the 

first.  In order to mAke these comparisons, the DEPROB program was 

temporarily modified to Incorporate an Impulsive lateral load over a 

portion of the beam. 

The most important conclusion which can be drawn from the 

results is that the two structural response codes predict almost exactly 

the same deflection time history (comparison of strains was not possible) 

This is no surprise, since DEPROB is based to a large degree in the MIT 

code; but, nevertheless, enough changes have been made so that these 

results are reassuring.  Secondly, the two experimental traces show no 

significant differences from the code predictions, except at late tiires, 

thus lending even more credence to the DEPROB results. 
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TABLE 11 

GEOMETRICAL AND PHYSICAL PROPERTIES OF BEAMS 

Beam 95 Beam 111 
DEPROB Models (ref. 29) (ref. 29) 

Material Properties Aluminum Aluminum 
6061-T6 6061-T6 

E, psi 10.81 x 106 10.7 x 106 

OQ» Psi 41600 41200 
Et, psi 
p, lb/in-' 

161000 61200 
0.09P 0.097 

Length, in 10.0 10.0 

Thickness, in 0.124 0.242 

Width, in 1.195 1.195 

Total Impulse, psi-sec 0.1575 0.272-+ 
Initial Velocity, ft/sec 5003 4480 
Length of Charge 
(centered on (J_) 1.932 1.988 

Edge Conditions Clamped Clamped 

Number of Masses 
in Half Span Model 30 30 

Number of Flanges 12 12 

Time Increment, sec 0.75 x iO-6 0.75 x 10"0 

Measured Permanent 
Set, in 0.581 0.522 
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4.2 DYNAMIC ELASTIC-PUSTIC RESPONSE OF PANELS — DEPROP 

The structural response program DEPROP was developed to calculate 

the linear elastic and elastic-plastic response of aircraft panels to 

static and dynamic pressure loads.  Panels on aircraft can generally be 

approximated by cylindrical or flat panels with combination of clamped 

and simply supported boundary conditions and can be single or multi- 

layered with Isotropie or orthotropic material properties.  The DEPROP 

program is a modification of a dynamic nonlinear cylindrical shell 

program called DEPICS (refs. 32-34) and contains the capabilities of 

specifying a static uniform pressure loading (preload) and a transient 

uniform pressure loading on the panel. 

The DEPROP analysis is based on the Novozhilov nonlinear strain- 

displacement relations for large displacement response of thin panels 

based on the assumption of undeformable normals.  The program has 

response options for either linear elastic or elastic-plastic material 

behavior.  The linear elastic option can be used with multiple layers of 

Isotropie or orthotropic material. An elastically Isotropie material 

possesses elastic properties which are Identical in all directions and 

are, therefore, independent of the orientation of the coordinate axes. 

The elastically orthotropic material defined for these panels under 

plane stress conditions possesses three orthogonal planes of elastic 

symmetry that are parallel to the geometric coordinate axes.  The 

elastic-plastic option provides an estimate of severe damage for a 

single-layered Isotropie panel for a material with an assumed uniaxlal 

bilinear stress-strain curve. The inelastic formulation is based on the 

Mises-Hencky yield surface, a kinematic hardening model and the Hencky 

stress-strain relations from the deformation theory of plasticity with 

modifications for regions of elastic unloading and reyielding.  The 

DEPROP program calculates displacement, strain, and stress time his- 

tories at selected positions on the panel to be used in conjunction with 

various damage criteria. 
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4.2.1    Basic Theory 

The single-layered cylindrical panel is considered to have a 

constant thickness h,  mean radius a,  subtended angle 6    and length I.     The 

cylindrical coordinates  (x,  0,  z) and the axial,   tangential, and radial 

displacement components  (u, v, w) are shown in figure 37 on the coordi- 

nate surface which is located at the median surface of  the panel.    The 

governing equations of motion for the panel are obtained from the 

principle of virtual work for a dynamic structural system (ref.   35) 

which is  given by 

'2 

I Jl la±i   6^ljdV ~ 6T ~   //"F   '   <Sd dA dt - 0 (92) 

where the panel is undergoing an arbitrary set of infinitesimal virtual 

displacements 6u,  6v,   6w that satisfy the geometrical boundary conditions 

and vanish at t*t1  and t»; T is the kinetic energy;  a.     are the compo- 

nents of total stress;   e.    are the components of total strain; F is 

the surface force vector; d is the displacement vector;   and integrations 

are carried over volume V and deformed surface area A.     It should be 

noted that this principle holds regardless of whether the material's 

stress-strain relations are elastic or inelastic and whether the force 

system is conservative or nonconservative.     If it  is assumed that 

T-T(u,v,w),  then 

ST = |l 5u + ^ 5v + |l öw (93) 
9u av 3w 

where the dots  denote  differentiation with respect  to  time.    With 

equation 93 and using  integration by parts. 

t2 t2 

/■     ,5T dt  -   -      /'     (^   || 5u + ^ ^ ^ + ^ ~- ow)   dt   ^^ dt   ov dt   aw 

h 
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It  Is assumed Chat the uniform blast pressure, p(t), acts on the 

coordinate surface of the cylindrical or flat panel.  As the panel 

surface deforms, the elemental pressure force vector remains normal to 

the coordinate surface so that It changes direction during deformation. 

The magnitude of this force vector also changes as the element surface 

area of the deformed panel changes. It should be noted that the portion 

of the pressure loading associated with the force vector's dependence on 

the deformations represents a nonconservatlve force system.  Based on 

the rectangular coordinate system (X,Y,Z), the components ru, ru and 

T]    of the Inward unit normal surface vector and the components d^, d 

and d- of the displacement vector d were defined In reference 32 In 

terms of u, v and w and their spatial derivatives. Thus, the vector dot 

product of the force and virtual displacement Is expressed as 

F • 6d - p(t)(nx6dx + nY5dY + nz5d2) (95) 

By neglecting terms above the second order and recasting In terms of the 

virtual displacements 6u,  6v and 6w, the virtual work done by the 

external forces Is given by 

[/ F   •   5d dA »    f /" p(t)(N öu + Nv  6v + Nw öw)dÄ (96) 

A Ä 

where 
s 

N        - -(w    + w  ) 
U XX 

Nv      -        -(we+w9+v)/a 
a 

N        - l-(w + w-vj/a + u w 9 x 

A       ■        undeformed surface area 

The subscripts on the displacement components denote spatial derivatives 
o 

and w denotes initial radial Imperfection in the panel. 

-115- 

..■.. .. 

■im   ■ - 



pP^W>»lP»P—"P"»««P^»n»^w* 

With equations 94 and 96 and the relation 

3e       3e       9e 
6e.. ■  r ^ 6u + : ^ 6v + . ^ 6w 

Ij   3u       9v      3w 

equation 92 becomes 

3e 

/ rfe I?+//K3 -^ - - // ^u-] ^+ [^ i 

]// 
3e, 

lj       3v 
dV -   // pNvciÄ j 6v    + [^ d_    3T 

dt     3w 

///Gij   "a1   dv-  f/pVÄJ^jdt-o (97) 

The displacement components are assumed In the following truncated 

series form with undetermined time-dependent coefficients, u (t), 
mn 

v (t), w (t): 
mn     mn 

M    N 

u(x,e,t) =■  ^Tx.  V u $u(x)(i)u 

m=l  n^l 
z- / ^:<*KW 

v(x,6,t)  = 

M    N 

m=l 
I 
n-1 

mn m   n 
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M N 

w(x,e,t) -  \  Y v
mJ*M*l W £        ^   mn m   n 

m"l  n"l 

(98) 

where $ (x) and 4» (6) are functions that satisfy the geometric boundary 

conditions of the panels. The Initial radial Imperfection In the panel 

is represented by 

M N 

w(x,9) - V  V a (£(xH"(e) 
^_   ^^  mn m   n (99) 

m"l  n»l 

where A  are prescribed values based on known or assumed deviations 
mn 

from the ideal shape of the panel.  Based on equation 98, the following 

relations are obtained: 

M   N M   N M  N 

>•■ 1 I svX' *■ I  1 «v« •5"- I i «v« 
m-1 n"l m*l n*l m=l n»l 

3u _ (U u   av   ,v,v   3w    w w 

mn 
(100) 

Introducing equation 100  into equation 97 and since 6u     , 
mn 

6v  and <5w  are arbitrary, the following 3MN equations of motion are 
mn     mn 

obtained: 

d_  3T 
dt  3ü mn ii> 

at 
11 

ij  3U 
dV 

mn -/(■"c dA - 0 (101; 

•ii: 
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3T   
//Kjä^   dV-//^nd*-0 <101b) 

dt    Sv mn ,, mn 

JT - - " ^ 
/J/^ij^T1 dV- //C^-0 (101c) 

.dt    3w mn ,. mn 

(m-l,2,3...M) (n-l,2,3...N) 

^U ^V /ljW 
where the integrands of the generalized forces   (Ö    ,  Q"   ,  OIL)  are 

given by 

äu    «     N       ^u ÖV    =     N       3v ÖW    =    N       9w flCP^ 
Tnn u  9u      '      Tan v  ov       '   inn w ow mn mn mn 

The kinetic energy of a single-layered panel is given as 

i    6 

T - ^ f     f     (u2 + v2 + w2) dxd9 ( L03) 

0 0 

where p is the mass density of the material and the dots denote differ- 

entiation with respect to time.  The rorary inertia contributions to the 

kinetic energy have been neglected. Modification of the mass density 

for multilayered pane s is introduced in subsection 4.2.5.  Further 

development of equation 101 depends upon the establishment of the 

strain-displacement relations, the stress-strain relations and the 

displacement component spatial functions. 
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4.2.2    Strain-Displacement Relations 

The. strain-displacement relations used In this analysis are 

based on  the assumptions:   (1)   strains are small compared with unity, 

(2) the  thickness of the shell Is small compared with the radius and 

(3) the Kirchhoff - Love hypothesis  that straight fibers which are 

normal to the undeformed coordinate surface remain straight  and normal 

to  the deformed coordinate surface and are not elongated,  thus neglec- 

ting transverse shear and normal strains.    The basic formulation of 

the following set of nonlinear strain-displacement relations  Is attri- 

buted to Novozhllov  (ref.   36).     The  total strain consists of membrane 

and bending components expressed by  the fcr? , ^ e + ZK.    The menbrane 

elongation and shear strains   (e     ,   cna,  e a) on the coordinate surface 0 xx      96      x9 
are expressed In terms of  the displacement components and their spatial 

derivatives: 

^ 1  r   2 ^     2^2,^      0 

e      »u    +TIW    +U    +vj+ww 
xx        x2x        x        x xx (104a) 

e9e " I v9 - I Xw + TT [ (W9 + Av) 
2a 

+  (v9  - Xw)2 + U9
2]   +-7«^ 

a 

(104b) 

ex6 a Vx + i U9  + I Wx   (W9  +XV)  +l Vx(v9  -  XW) 

1 1     0 0 
+ — uQu    + —  (w wQ  + w.w  ) 

a9x      ax9 8x 

(104c) 

Similarly, the change of curvature quantities (< xx <9e. <xe) °f the 

coordinate surface which characterize the bending and torsional deforma- 

tions of the panel are given by 
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XX 
w      (1 + v./a - Xw/a + u ) 

xx 9 x (105a) 

C99 "-W99 +-TV9 +-T (-w + v9) +IUx a a a 

+ -3 (w9e + \ve)(vQ - Xw) 
a 

(105b) 

2    99  x 
(v    - w)    + — (w +v) 

a 

+ — W9(we   +  v) 

'x9 
- v a + — v    + —x w a   (v. 
a    x9      ax 2    x9       6 

a 

^ 2X       ,       ,     , 
+ - wx(w9 + v) 

a 

+ au    -  Xw) 
x 

(105c) 

Primarily,  only those nonlinear  terms are included in equation  105 which 

involve  the radial displacement and  its derivatives.     The  subscripts  on 

the displacement components  in equation 104 and 105 denote partial 

spatial derivatives.     The end  terms  in equation 104 are included  to 

account  for the initial radial  imperfection of the panel as  indicated by 

Donnell's  representation in reference 37.     The parameter  X  is  introduced 

in  the strain-displacement relations so  that  they apply to both curved 

and flat panels.    Thus,  X  =  1  for curved panels.     For  flat panels. 

\ 0, a = 1, 9 is replaced by y, and 6  is replaced by b, the width 

of the flat panel. 
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4.2.3    Constitutive Relations 

In DEPROP,  the behavior of the panel material is treated as 

elastic-plastic for Isotropie single-layered panels and elastic for 

Isotropie and orthotroplc multllayered panels.    The elastic-plastic 

analysis for the single-layered panel has been established as the basic 

formulation In the DEPROP program.    The elastic multllayered analysis  Is 

established as an alternate option based on appropriate modifications of 

the elastic-plastic formulation.     In the DEPROP analysis the  solution 

Involves total strains and stresses;  therefore,  for response In the 

Inelastic region,   It Is convenient to use the deformation theory of 

plasticity listead of flow theory which Involves Incremental strains and 

stresses.     Plastic deformation theory is based on an averaging process 

that permits a total strain solution dependent upon only the final 

stress state at the end of a loading path.    In general, deformation 

theory Is an approximation of the more rigorous flow  (incremental) 

theory but Is equivalent to flow theory for an elastic-plastic material 

when the stress loading Is proportional,   that Is,  the ratio of principal 

stresses remain constant during the loading process.     However,   since  the 

dynamic response solution is solved incrementally in time by numerical 

methods in DEPROP,  the strain Increments are small and the stress state 

is fairly constant in the plastic region over each time step for which 

the equations of motion are solved.     Thus,  the plastic deformation 

theory provides a much more accurate solution when the averaging process 

takes place separately over each small  time increment as the response 

solution is obtained by a step-by-step  timewise procedure. 

In deformation theory the  total strain is a  function of  the 

state of stress and consists  of a recoverable elastic component and a 

nonrecoverable plastic component.     It  is  assumed that  the material  is 

incompressible,  that is,  no permanent  change in volume,  due  to  the 

plastic strain.     Thus,   the total plastic  strain is equal  to  the deviator 

plastic strain.     Furthermore,   it  is assumed that  the material's uniaxlal 
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stress-strain curve is modeled by the bilinear representation shown in 

figure 38 in which the strain hardening is defined by slope E .  This 

stress-strain representation is Interpreted for the biaxial state of 

stress through the use of the effective stress (o)-effective strain (e) 

concept in which the secant modulus (E ) Indicated in figure 38 is 

defined by 

3 
Z 

a    + E(t -  t   ) 
o   t      o 

(106) 

where a  ,   e    are the yield stress and strain, respectively,  from the 

material's unlaxial bilinear representation.    Thus,  the effective 

stress,  effective strain and secant modulus quantities are used to 

relate the biaxial stress-strain condition to the assumed unlaxial 

bilinear stress-strain representation for the Isotropie material.    The 
_ _ Oi 

effective stress and strain,  expressed as o » ^^a±A^ an^ e " %(e±^' 

are functions of the total stress and strain components,  respectively, 

and are more conveniently introduced in explicit form later in the 

development. 

The Hencky stress-strain relations for deformation theory 

(ref.  38) are used in the plastic region and are given in the  following 

form: 

| [(l+v)a    --.6..] +f (|--|)   ^-KfcV   (107) 
Ij      kk ij 

where E is the modulus of elasticity, v is Poisson's ratio and 5.^ is the 

Kronecker delta. The first portion of equation 107 represents the 

elastic component of strain while the second portion represents the 

plastic component of strain in terms of the deviator stress.  For use in 

equation 101, the stress-strain relations in equation 107 are inverted 

into the form a., *  f(e..) for the case of plane stress (a «a. =0 =0), 
ij     ij r zz  6z xz 

and are given by 
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Figure  38.    Effective Stress-Strain Bilinear 
Representation 
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where 

«ij - ^2  ^-V^lj + Vkk5!^   «'i'^'V (108) 
s 

1   Es ,1    , 
Vs " 2 - F (2 - V) 

e12 " 2 ^xS' ell ' ^x' e22 * e99 

It should be noted that the forms of the stress-strain relations In the 

elastic (£ -E) and plastic regions are Identical, 
s 

The yield criterion, in conjunction with a hardening rule, and 

the stress-strain relation for unloading and reylelding by which the 

past strain history is preserved are to be established. The initiation 

of yielding for a biaxial state of stress is based on the Mises-Hencky 

yield criterion (raf. 38) given as 

2     2 2 1/2 
0 '  [all +a22 " all 022 + 3al2 1 (109) 

where a is the equivalent or effective stress and 

all " axx' a22 " "96 ' ai2 " 0x6 

This yield criterion states that plastic flow will occur when the equiv- 

alent stress a reaches a value equal to the uniaxial yield stress in 

tension a . A kinematic hardening model is employed in conjunction with 

the Mlses-Hencky yield surface which accounts for the Bauschinger effect 

when reylelding occurs due to the strain reversals during unloading. 

The Bauschinger effect for a strain hardening material is described by 

the yielding behavior of a material at a reduced yield stress when 

reloaded in the opposite direction from that of the initial yielding. 
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The kinematic hardening models discussed In reference 39 assume chat 

during plastic deformation the yield surface translates as a rigid body In 

stress space with the size, shape and orientation of the elliptical yield 

surface being Invariant. The kinematic hardening model to be used in 

this analysis Is Illustrated In figure 39 for the Mlses-Hencky yield 

surface In the plane of the principal stresses a and a..  Corresponding 

to the Initial yielding position (1) and the unloading position (f) 

Indicated In figure 38, the rigid translation of the yield surface for a 

shift of the stress state from position (1) to position (f) Is shown In' 

figure 39.  The change In total stress components from position (1) to 
a. 

position (f/ are defined by a., and, similarly, the corresponding change 

In the total strain components are defined by ß. , so that 

%  r    ^r-1 . r-1    r-1 
alj " aij +alj(f) " alj(l) 

(110) 

y  r    yr-l     ^r-1   ^r-1 
eij " Blj + elj(f) " elj(l) 

where 

r  ■ the number of elastic unloadlngs from yielded conditions 
(r-1,2...) 

ij  Pij 

(1) Indicates Initiation of yielding or reyleldlng 

(f) Indicates final position prior to unloading 

The yield criterion for the translated yield surface is based on the 

effective stress given as 

(LID 

Furthermore, it is advantageous in this analysis to relocate the origin 

on the e axis after each unloading such that the extended elastic 
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MISES-HENCKY YIELD SURFACE 

^^ 

TRANSLATED YIELD SURFACE 

Figure  39.     Kinematic Hardening Model 
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unloading curve passes  through the zero position.     This Is accomplished 

by defining the effective strain as follows: 

Thus,  the elastic-plastic behavior of  the material  for sub- 

sequent yleldings after an unloading has occurred Is always based on the 

same a versus t curve which originates at position   (0,0).    This approach 

requires that the stress-strain relations be modified by the a      and 

?,4  quantities for unloading and reyleldlng conditions to account for 

the past  stress-strain history.    The general form of the stress-strain 

relations for the elastic,  elastic-plastic,  elastic unloading and 

plastic reyleldlng regions are idrntlcal,  so that  the general stress- 

strain relations based on the form of equation  (108)  is given by 

E %r     . s 
o, .  ■ a,,  + 
ij        ij ,       2 1-v s 

[^V^iJ^VV^ij ^3) 

(i.j.k -  1,2) 

where for the following regions of response, 

a) initial elastic loading     E =E, a.r = ^ r ■ 0 s ij ij 

b) initial  plastic loading E »E   ,  a.r =  3  r = 0 
s    s       ij ij 
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c) qth elastic unloading 

d) qth reyielding E
S-

E
S- 

äJ ■ y- M ■ y 
Thus, there are four basic regions of response for which the stress- 

strain relations have been established by equation 113. For an elastlc- 

perfectly plastic material, E •> 0 and a  are set equal to zero in 

equations 111 and 113.  It should be noted that for a strain hardening 

material, a stress path which may move along the yield surface (neutral 

loading) would not be properly represented in the analysis, since, upon 

unloading, the yield surface would be rigidly translated. 

For elastic, Isotropie or orthotropic multilayered panels, the 

stress-strain relation formulation follows the approach presented in 

reference 40.  In orthotropic layers, the geometric cylindrical coordi- 

nate axes and principal orthotropic direction are assumed parallel.  The 

multilayered cross section for the panel is shown in figure 40 with the 

nomenclature used in the following formulation.  The position of the 

coordinate surface relative to the inner surface of the panel is defined 

by the distance H.  The membrane and bending stress resultants for the 

multilayered panel are given by 

^ ' CUexx + C12£60 + hl***  + F12K9e 

^ee " C22ee9 + C12£xx + F22^9 + ^xx 

x9   33 x9   33 x9 

axx " Dl^xx + D12K9e' + hl*** + h2CSi 

i xx 2-39 12  XJ 99 22  99 12 xx 

a   ,   = D^^<   ,  + F,„£ 
x9 33 xc 33 x9 

(114a) 

(114b) 

(114c) 

(I14d) 

(114e) 

(U4f) 
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COORDINATE 
SURFACE 

Figure 40 - Multilayered Cross Section 
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by 

The elastic stiffness constants Ci4, F  and D  are defined 

1 I 

cii - Z Bii (hk - vr -ij     j-J -ij 
k-1 

Fij -i EBij f^-O-25^-Vi) 
k-l 

Dij " i LBij[(hk-Vi>-3»^-V2i> 
k-l 

+ 352(hk-Vi^ 

E'1                                      E^ V^E^ \J   E^ 
R k    _        Ex k    _    Je  k k        k _    VxE9    _    Vx 

11 ,    k k    '     22 ,    k k *    33 xe'     12      .     k k      .    k k 

where 

k  k 
E , E„ are the moduli of elasticity in the x and 9 directions, 
x  9 

respectively, of the kth layer 

k  k 
V 

tively, of the kth layer 

v^, vfl are Poisson's ratios in the x and 9 directions, respec- 

G n    is the shear modulus of the kth layer x9 

h,     is the distance from the inner shell surface to the outer 

surface of the kth layer 

n     is the total number of layers 

For an Isotropie material E =E»E,v ■ va ■ v and G x  9  * x  e      xe  2(i+v) 
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It has been found that the optimal position of   the coordinate 

surface for the most efficient modal convergence is at  the neutral axis 

of the cross section.    When the coordinate surface is  located at the 

neutral axis,  the interaction stiffnesses F      vanish.     These interaction 

stiffnesses reflect the influence of the change in curvature on the 

membrane stress resultants and the membrane strains on the bending 

stress resultants.    As discussed in reference 40,  for the general case 

of an antisymmetrical orthotropic multilayered cross  section,  a  neutral 

axis,  which is defined when all F      ■ 0,  does not exist except  for 

special combinations of elastic characteristics of the various layers. 

For  the general case,   the position of  ehe  coordinate  axis,  defined by H, 

is established for this analysis by setting F...  ■ F09 ■ F      ■ F,    ■ 0 to 

obtain the values 

E h]  ^ - O 
iL.     -    ^  (115) 
ij 

2 E Bij(^ - w 
k»l 

and then H is determined by averaging these values as follows: 

5 = i(Sll + 522 + ni2 + V ai6) 

It  should be noted that  .for  cases where the neutral  axis  does  exist,   the 

coordinate surface  is  located  at  this position through  the above  proce- 

dure.     When the center of mass  of  the cross  section does  not coincide 

with the neutral axis,  a slight discrepancy  in the  inplane  inertia would 

be  introduced since the rotary  inertia is not  included  in  this analysis. 

Experimental results  indicate  that  the rotary inertia affected  the response 

quantities by about  only  17a   for  a  shell undergoing  large  displacement  response. 
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4.2.4 Displacement Component Functions 

In equation 98 the displacement components are expressed In 

series form as a product of time-dependent coefficients and Independent 

spatial functions $   (x) and | (9).  These spatial functions are selec- 
m        n 

ted so as to satisfy the geometric boundary conditions of the panels. 

The boundaries of the panel are assumed to be either clamped or simply 

supported and spatial functions are defined to cover all combinations 

of these boundary conditions for the four edges of a panel defined by 

x ■ 0, 2. and 9 ■ 0, 9 .  On clamped edges the boundary conditions 

3x  36 

are to be satisfied while on simply supported edges the boundary condi- 

tions 

2       2 
3 w    3 w    „ 

w » v = u = —r-    » —— = 0 
3x     30" 

are to be satisfied.  Since the panels are uniformly loaded, the assumed 

displacement functions will adhere to this symmetry.  The nondlmensional 
TTX T 9 

variables y » — and 8 ■ 7— are Introduced for use in this analysis. 

The spatial functions for the u and v displacements are assumed to be 

the same whether th^. edges are clamped or simply supported and are 

given by 

4 (Y) ■ sin 2my 
■n 

?u(3) " sin (2n-l)ß (117 ) 
n 

$ (y) ■ sin (2m-l)Y 
m 

*V(ß) = sin 2nB 
n 
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The boundary combinations for Che y and ä  directions are based 

on opposite edges being both clamped, both simply supported or one 

clamped and one simply supported. The w-displacement functions for the 

Y and ß directions are hased on the natural vibratory mode shapes of a 

uniform beam with corresponding end boundary conditions.  These spatial 

functions in the y and ß directions are given as follows for the three 

boundary combinations: 

For clamped/clamped or clamped/simply supported 

m = cosh 
m 
IT 

m 
- cos   

TT 
- a 

m 
sinh 

\ 

m 
TT 

- sin 
V) 

= cosh 
A ß 
n 
TT 

\    ß 
n 

- cos   
TT 

- a 
n 

(sinh 
A ß 
n 
TT 

• sin 
V) 

(118) 

where 

A or A are the odd roots of cos A. cosh A, = 1 for the clamped/ 
m    n i     i r 

clamped boundary condition 

A or A are the odd roots of tan A. = tanh A. for the clamped/ 
m    n ii 
simply supported boundary condition 

m 
cosh A, - cos \. 

i sinh A. - sin A. 

i m n or m 

For simply supported/simply supported 

w 
I *    sin (2m-l)7 

(119) 
w 

p  = sin (2n-l)3 
n 

It should be noted that the functions given in equations 113 and 119 are 

orthogonal. 
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For the general  curved panel,   there are nine  combinations of 

boundary conditions provided  by  the DEPROP program,  namely. 

Y-direc tion ß-direction 

1. C-C C-C 

2. S-S S-S 

3. C-C S-S 

4. S-S C-C 

5. C-S C-C 

6. C-C C-S 

7. C-S S-S 

8. S-S C-S 

9. C-S C-S 

The  first  four combinations   (1-4)  have symmetry in both directions,  the 

next  four combinations   (5-8)   have nonsymmetry  in one direction and 

combination 9 has nonsymmetry  in both directions. 

4.2.5    Governing Equations of Motion 

With the strain-displacement  relations   (equations  104 and 

105),   the stress-strain relations   (equations 113 and 114)   and the dis- 

placement component  functions   (equations  117-119)  defined,   the governing 

equations of motion  (equation  101)   for alastic-plastic deformations are 

developed  further by performing  the  indicated spatial  integrations.     For 
W V u 

convenience,   the dimensionless quantities W=—,V=—,U=—, 
1
0

T       W TTX 0        ^8        T S. T        ff _ a .   „ 
Wa—  ,Y=7— ,     3 = — ,L = —,   J = — ,   R =    T-    and   K =   <a are a I 9 ^a 3 h 
introduced into the formulations.     With this notation and  the spatial 

integration for the kinetic  energ-    :.,i  equation 103 performed analyti- 

cally,   the  governing equations  of motion in  the  radial displacement 

direction  (equation 101c) are  given by 

-134- 

MMMiliMliMlilMMllMiiiMM*fc«MMrii unii'-ni ■mr.-.. ■.M.M*....**,...^-,.., 



■c-T-mrr—nr, nT"^-"" 

3^ 
, TT       TT       h/2 

NV^mn + T-     /   /     /    ^J if d^dz -   /   / ^dß - 0 

o    o    -h/2 
mn 

(m-l,2,...M) 

(n-l,2,...N) 
(120) 

where for  the w-equations 

k  ,  k0 * /2~  for C-C or C-S opposite boundaries 
<       P 

= l/Z^for S-S opposite boundariesi 

for  the u and v-equations 

k    - k   - l/Zf 

and 

a, 5 0 1 3W 
(^ -  2l/RPa -  XW -  XW + JVg + r UY) — 

mn 

Qv =  -2L2Rp(JW3 + JW3 + XV)  ~ 
mn 

Q     =  -2LRp(W    + W )  — 
^u Y Y     ^U 

3U 

mn 

(121) 

Although equation 120   is  given  in terras W    ,  the equations of motion  for 
mn 

the tangential and axial aisplacenent directions can ba obtained by 

replacing W  with V  and U  , respectively, and using the appropriate 
;nn     ran     mn 

k , k„ and Q expressions. 
Y        P 

The  remaining  spatial   integrations  in equation  120  are   to  be 

accomplished numerically  thus  providing a mechanism for discretization 

through  the spatial points  selected   to  compute  the  representaji^^ 

elastic-plastic behavior  throughout   the  panel.     Thus,   a  sufficient 

number of  spatial points must  be  specified  to obtain a satisfactory 

deformation response solution.     For  integration through  the  thickness of 

the panel  in  the  z  direction,   it   is convenient  to  separate  the  integrand 
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Into parts which either are or are not explicitly dependent on the z 

variable, that is, involving membrane strains and bending strains.  The 

total strain quantities e.  given in equation 120 for an arbitrary 

position in the panel consist of the membrane and bending components 

given by 

^ " £ij + ZKij 
(122) 

Therefore,   the integrand can be given by  f    + zfb where 

f    - a 
3e 

xx 
xx 3W 

mm 

+      0 
3e 

96     9W 
89 

mn 

3e xe 
x9    3W 

mn 
(123a) 

3K 
xx 

xx 3W 
mn 

3K 
99 

99     3W mn 

3K 
x9 

xG     3W 
mn 

(123b) 

and  the  total stress components are obtained from equations    113 

and     110     in which i,j=l denotes  x and  i,j=2 denotes  6.       The 

Legendre-Gauss quadrature formula   (ref.   41) was chosen  for  the 

numerical  integration in the  z direction where L is  the number of points 

selected through the thickness of  the panel.   In the y  and  ß directions 

it  is convenient to have even spacing and  it is advantageous  to  have 

spatial points on the clamped edges and at  the center  of the panel. 

Simpson's  quadrature formula   (ref.   41)  satisfies these desirable  features 

and   therefore was  selected over  various  Gaussian quadrature   formulas. 

The number of spatial points  selected in  the y and ß directions  are 

given by M and N,  respectively,  where M and N must be odd numbers.     By 

performing  the indicated numerical  integrations,  equation  120  is  recast 

into  the  form: 
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k k0pJl2W     +  Y  ß        nm 9(M-1)(N-1) 1  I »A V I Hi 
j-1    k-1 I 

fl(vv 
i-1 

(m-l,2...M) 

(n-l,2...N) 

where 

5.   are the zeros of the Legendre polynomial    P-  (5) 

zi " 2C1 

2(1-^) 
Hi " TTTTT"^ (Lfi)   [v^JV 

.. iiMniMNi 

I 

ir5ifbi(vv] -I (Yr V -0 (124) 

H,   , - 4 (j,k - even) 
j or k    J 

2 (j,k " odd, except for J"l, M or k » 1,N) 

1 (j-1, M and k-l,N) 

When symmetry is present in both the Y and 3 direction, for example, 

only one quarter of the panel need be considered and the spatial inte- 

gration takes the form 
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ir/2     IT/2 2 2 
M*l N+l 

2 

/        /    F(Y>g)dYdB ■      _   4n  _    YcH        2     W^i.3k) 
J    ^ 9(M-1)(N-1) . , :1 J  . ,   ^ ^  J  ^ 

4 

o   o 'w "'v*" *' j-1     k-1 
(125) 

where 

cj 
M 1 j - 1, 2,  . 

M-l 
2 

- 
1 
2 >■¥ 

dk - 1 k - 1.  2.   . 
N-1 

"•     2 

' 
1 
2 fc        2 

For Che purely elastic solution of a panel, the integrations through the 

thickness can be obtained analytically, and results in the following 

simplification in equation 12a: 

ivi • ^ . zw- -k'b       ^ 
i-i i=i 
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where  a       replaces a      In f     (equation  123a),   o replaces o       in 

£     (equation  123b)  and 

m E      r 
1 m             I (l-v)e^   + v£,,16, 
ij ^^2   I ij kk-ijj 

(127a) 

b E 
■u     ^ L^^ij+vVij] 

(i.j.k -  1,2) 

(127b) 

The quantities e ,  e      and e a a   » given by the normalized 
XX OÖ Xu 

versions of equations 104 and 

3e 
 } 

3U 
xx 

am 

3U      1    3U 

au      L Y 3U mn mn. 
(128a) 

3e xx 

mn T2 Y 3V L     mn 
(i:3b) 

äW 

:      ,  r  3W    0  3W 1 
=« -  !- - w ^ + w  -JL_ 
mn    L 2 i Y aW     Y  5W mn mn ! 

(izsc: 

3U 
99 

mn 

2   5Uß JZU,  rrr2- ß 3U mn 
(i:8d) 
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3e 99 3V, 

3V 
mn av 

mn 

3V 
+ AJW0 3V 

6  mn 
V 3V  + J V6 3V 

mn        mn 

3V, 
- \JW 

3V 
mn 

(128e) 

3e 
69 

dW 
-\ 

mn 

3W 
3W 
mn 

2   3W8 
+ J W —— J W3 3W 

mn 

7°      3Wfl 
+ J W —— J Wß 3W 

mn 

3W, 
+ AJV aw 

mn 

-JAV 
3W 

ß 3W 
+ xw 

mn 

3W 
3W 
mn 

(128f) 

3e 
x9 

3U. - J 
mn 

3Ü_6 

3U 
mn 

JU-  3U 
_i _X 
L  3U 

JU 

mn 3U 
mn 

(128g) 

3e 
x9 

3V 

3V 

3V 
mn 

3V 
+ XW 3V 

Y  nm 

3V, 
+ JV 

Y 3V 
mn 

3V 

JVS 37 

3V  "I 
- XW 

im 
3V 
mn 

(128h) 

3e xe 
3W 
mn 

3W„ 3W 3W„ 3W 
JW 

Y 3W 
+ JW, 

mn 5 3W 
+ JW 

mn Y 3W 
+  JW 

mn ß 3W 
mn 

aw sW 
+ xv —J— - xv aw 

3W       Y  mn 
mn 

( 1.281) 

The quantities K^^, K^ and K^  are  given by the normalized versions of 

equations 105 and 

3Kxx    ,      ™ 
- ^ W 5U 

I_ 
mn T3  YY 3Ü 

L       mn 
( 129.- 
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3K . 3V0 

3V .2       YY  3V 
mn L nm 

( 129b) 

mn L 

3W 
_1X 
3W 

am L mn 
(129c) 

3Kee 1   3U
Y J2 3U

Y 

3U L     3U L       ßB     3U 
mn mn mn 

(l29d) 

3Kafl 3 2 3V« 
(2AJ + JJW00 + 4XJ^V,   -  3AJW)   TTT 

3V 
mn mn (129e) 

+ XOJWg + 2V)   3V 
3V 

mn 

9K 
69 

3W 
mn 

? . 2 ,2 3W 
J     + J V0   -  XJ  W + — U    )  ^77 y 2 L       Y     3« 

66 

mn 

+   (-.■   +2AW-  3AJV3  -  AJWöß)   3W 

7 3W 
+X(4JZWß + 3JV)  T^- 

mn 

mn 
( 129f 

3K 
x6 

3U 

3U 
mn I2       ^3    5U

mn L mn 
( 129-) 

3K 
x9 

nm 
VL     3V L       yS     3V 

mn mn 
L       Y   ^V 

3 V 

mn 
( :29h) 
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!5£i . 2J /       1 
3W      L  l1 + JV3  L Y 
mn 

n 3W 

mn mn 

ran 

2XJ             3W 
L      Yß  3W 

mn 

2
T

AJw 
L       Y 

3Wß 
3W 

(1^9i) 

For Che elastic response solution of nultilayered panels, the 

same formulation is ujed with several modifications.  The stiffness 

constants in equation 114, C , F  and D  , are considered to have been 

divided by a, a and a , respectively, and R • a/h •  In equation 124, 

p is replaced by p given by 

k 1 pk (hk - w 
k-1 

and 

i i 
i-1 

Hf? = 2Rf* 

Hi?ifi " ^^ 
i=l 

^m    ^b 
The a and a quantities given in equation 114 replace the appropriate 

total stress quantities given in equation 123.  With these modifications 

in DEPROP, elastic response solutions can be obtained for multilayered 

panels of Isotropie or orthotropic material layers. < 
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4.2.6    Numerical Analysis 

The second-order differential equations given by equation 124 

and corresponding equations  for V      and U      are to be solved numerically 
nm    mn 

In time. The Integration method used to obtain an approximate t im'.wise 

step-by-step solution is based on the central difference formula glveu 

by 

\+i - K (At)2 + 2xk - ^-i (l30) 

where 

X      represents the normalized undetermined time-dependent displace- 

ment coefficients,  W    , V      and U mn     mn mn 

At    Is the time increment 

k     denotes  the time step 

This central-difference method replaces the higher order Integration 

method used in the DEFROP program in reference 1. The central-difference 

method permits a time increment about 50% greater than the previous 

higher order integration method without any significant change (less 

than 1%) in the response solution for the panel problems considered. 

The starting procedure used for this method is the same as that pre- 

sented in  subsection 4.1.10. 

In solving the  set  of simultaneous second-order differential 

equations,   spatial  integrations must be performed  in  the  y  and 3 direc- 

tions and in  the  z direction  for the elastic-plastic  solution during the 

stepwise time  integration.     The required  integrations  are  performed 

numerically during each  time  step using the values  of  the  displacement 

coefficients W     ,  V      and U       for the particular  time  step  to compute mn      mn nm 
the displacements  and  their  derivatives,   the strain quantities and  the 

stress quantities  used  in equation 124. 

■143- 

HMMiMM**Ma  , ■ -— 



«■■" >"" 

Several situations arise in uhe Implementation of  the biaxial 

elastic-plastic theory In DEPROP which require special numerical treat- 

ment.    These situations are associated with the overshoot during the 

time Increment  In which yielding occurs,  the criteria for determining 

elastic unloading and restrictions if unloading  is  followed by immediate 

reyieldlng,  and the consistent determination of  c,  E  ,  v    and o      during 

each time step.    The special numerical schemes used  to  treat these  three 

situations are described briefly in the following three paragraphs, 

respectively. 

Whenever a point  in the panel yields or reylelds during a time 

increment   (a  > o   ) ,   the stresses cannot,   in general,  be computed on a 

purely elastic basis.     The computation of stresses should follow the 

bilinear stress-strain carve;  but this  is very difficult to effect since 

a is not a linear function of the o     's.     Instead,  an Iterative scheme 

is employed to adjust the OJ.'S proportionately,   so  that o ■ o  .    By 

elastic relations,   the associated strains :..   (a..)  are then determined 

for the later computation of B. .   (equation l.'O).     The process for 

correcting for overshoot when yielding occurs between  times  t.   .   and  t 

is illustrated in figure 41.    The values of  e and a are shown at  time 

t,   .;   the values Indicated at t,   represent hypothetical uncorrected 

values.     By linearly adjusting the stresses,  the point   (e   , c  )  is 

reached.     It  is noted that  the actual point at  time  t,   should be   (e. , 

o  )  instead of   (e. ,   a  ),   but the error  in stress  is  relatively small 

since E./E <<  1.     The error Introduced  is proportional  to  the size of 

the integration time step  used. 

For a point  in the panel which is yielding at  time t,      ,  elastic 

unloading   is  detected when,   in proceeding   to   the   next   time   :,,   the  equiva- 

lent strain decreases,   i.e., :,    ,.     Vfhen  this  occurs,   c,   and   ■     are k-1 k k. 
recomputed  using the  elastic unloading version of  equation 113.     Fur- 

thermore,   unless a.    is  less  than a.      ,   it   is  assumed  that  the point  did 

not unload.     This possible  inconsistency is partially numerical  in 
nature,   and   is  partially  due   to  the  nonlinearity  of   the  equations 

•U4- 

MMMaMa 



o- ♦ 

<T.  — 

ak-i !  

Figure 41.  Correction for Overshoot at Yielding 

111 or 112.  However, only raraly will a point pass the strain criterion 

for unloading but fail the stress criterion.  Due to numerical discrep- 

ancies, it is possible for the computed :, in the unloading region to be 

greater than o at time t, .  i'his inconsistency results in reyielding 

without any overshoot correction being made.  In fact, this event repre- 

sents a numerical error and is usually associated with the initial 

stages of numerical instability of the solution.  Consequently, if this 

event frequently occurs, the run is automatically terminated and a 

smaller time increment must be selected. 

In the temporal integration sequence, the displacement coefficients 

are computed for the end of the next time step at t, . through the 

central-difference formula (equation 130) given the past displacement 

coefficients at t. and t, , and the acceleration at t, .  These extrao- 

olated displacement coefficients are then used to compute -;, . at t, , . 
" _  ij    K.+1 

Then, for points in the plastic region, the quantities  , E^ and   .ire 
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evaluated in order  to compute a       at  t.   . •     However,   e   is  dependent on 

v     (equation 112),   E    is dependent  on £   (equation 106),   v     is  dependent 
» s s 

on E (equation 108), and a.,   is  dependent on E and v  (equation 113) 
s ij s     s +•■-" 

Thus, a simple iteration scheme is used to simultaneously solve for the 

three parameters z,   E and v , so that a consistent determination of 
s     s 

aii can '}e ma^e at tic+l'  
Then» wich the displacements, their derivatives, 

e., and o  , all determined at t, ., the accelerations are computed at 

t,   through equation 124 and the whole process is then repeated for the 

next time step. 

A method has been established for estimating time increments At for 

the temporal integration that would result in stable solutions for the 

majority of panel cases.  The proper time increment is a function of 

geometric and physical properties of flat or curved panels and, for the 

DEPROP formulation, also a function of the number of modes uso.d and the 

spacing between spatial integration points.  The method for estimating 

time increments is based on formulas for the higher vibratory frequen- 

cies of linear elastic panels which incorporate the aforementioned 

parameters.  The basic frequency formulas for single-layered flat and 

curved panels were obtained from references 42 and 43 and modified for 

multilayered panels.  The time increment is estimated by the product of 

the reciprocal of the frequency and an arbitrary adjustment factor.  For 

both threshold of permanent and catastrophic damage levels, the panel 

response is nonlinear so that the arbitrary adjustment factors are 

determined by back-figuring from the time increments found to give 

stable solutions for various representative panels.  In some panel cases 

considered where the spacing between integration points was critical 

for numerical stability, it was found that the It   formula used in refer- 

ence 44 for finite difference solutions is applicable.  This formula is 

based on the time for an inplane elastic wave to propagate between mesh 

points. 

For flat panels the governing time increment used as the initial 

estimate for At in DEPROP solutions is the smaller It  obtained from the 
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following two formulas.  The first formula Is associated with the 

highest solution frequency of a flat panel with inplane stresses which 

are assumed to be at a level corresponding to yield or ultimate stress 

of the panel material and is given by 

/it    -    — x 
1        25  \   •' 

2 
D22Amn ,   k^ 

Eo       (h,-h,   .) 
max    k    k-1 

-1/2 

ran i 

Z pk ^-Vi5 E ;k ^kA-i5 

k-l k-1 

(131) 

where 

mn 'f)'* (f) 
a        =    vield or ultimate stress 

max 

m 2m-l-t-c 

:n-l+c 

and c»0, 0.15 and 0.3 for S-S, S-C and C-t boundarv conditions, respt 

tively. 

The second formula is associated with the elastic vave propagation 

between integration points in the short direction and is given by 

b 

N'-l 

E 
k-1 

■. (h, -h, .) 
it   if.     k-1 

(132) 
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For curved cylindrical panels the smallest At obtained from five 

formulas is used for the initial estimate for DEPROP solutions.  The 

first two formulas are associated with high frequency modes of cylin- 

drical shells and are given by 

■- n 

At, 
ira 
35 

Zww 
k-l 

'22 

1/2 -1/2 

_9 
1+X -2   2-2 

a-A )+4v X 
1 1/2 

(133) 

ira 
At  »   

2  35 

-7 -2 7 D22(kz+x-r 

k=l 

X4c, 

2 ,A 
(k2+\2) 22oAhira^_/) 

k' k k-l' 
k=l 

-1/2 

where 

niTTa 

n^ 

(134) 

The third formula is associated with the elastic wave propagation 

between integration points in the ^-direction and is given by 
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At. 
a6 
 o 

N-l 

E '^Wi) 1/2 

k-1 
(135) 

'11 

In cases where the length of the panel in the x-direction is much 

shorter than the arc length in the 9-direction, it was found that the 

flat panel formulas were more applicable than the above three formulas. 

Thus, the fourth and fifth formulas used are based on equations 131 and 

132 with changing D» to D  and b to a9 in equation 131, and b to £, N to 

M and C. to C.. in equation 132. 

The smallest time increment obtained from the modified formulas 

used tor  either flat or curved panels represents an estimated value that 

will generally give a stable solution, but does not necessarily repre- 

sent an optimal value for minimizing computer time.  If a stable solu- 

tion is obtained with this estimated time increment, the time increment 

can be increased until two consecutive solutions disagree significantly 

and the penultimate time increment selected for future computer time 

optimization, if desired.  If the solution diverges using the Initial 

estimated time increment from the formula procedure, halving the time 

increment should easily result in a solution in the stable range.  The 

DEPROP program provides the option of automatically using the above 

estimated time increment or having the user select a value. 

4.2.7 Preload Static So1ution 

To account for the steady-state airloads on the panel prior to 

the blast encounter, the displacement components (u,v,w) are determined 

for a uniform static pressure load (p ). These displacements are used 

as the initial values to start the dynamic solution for ^he transient 

blast pressure.  The static displacements are obtained from all the 

equations of motion of the form given in equation 124 by a relaxation 
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technique that permits a solution of these nonlinear equations by 

Iteratlvely reducing their residuals 10 zero.  In the case of the 

equation of motion, the residuals represent the accelerations In the 

u,v, and w directions.  The Initial trial values of zero for the modal 

displacement coefficients u  , v , w  are used to start the relaxation 
am  mn  mn 

procedure. 

4.2.8 Approximate Solution for Elastic-Plastic Response of 
Sandwich Panels 

The elastic-plastic option of DEPROP Is limited to handling 

single-layered Isotropie panels, so that a three-layered Isotropie 

sandwich panel is reduced within the program to an equivalent single- 

layered panel based on equating corresponding extensional and bending 

stiffnesses. A sandwich panel with face sheets of the same material 

described by a , e , E and E , can be reduced to an equivalent single- 
00       t 

layered panel defined by the following quantities in terms of the 

nomenclature of figure 40: 

(h. + h - h ) 1/2 
he -  (h - h + h )  [3h1(h3.h2)]

1/2 (136a) 

E(h - h + h ) 
E  »  J , z ~ (i36b) 
e n 

e 

oe    =  Ec (136c) 
0     e o 

E (h  - h, + h ) 
Ee - ——i——^ — (136d) 
t n e 

3 

"e  '  h"  2 DkChk " K-^ (13^ e 
k»l 
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where 

t 
e 
t 

e 

e 

equivalent thickness 

elastic modulus of  face sheets   (equal to o0'z0> 

equivalent elastic modulus 

strain hardening modulus of face sheets 

equivalent strain hardening modulus 

equivalent mass density 

equivalent yield stress 

4.2.9 Initial Panel Imperfections 

There are Initial geometric Imperfections In actual panels on 

an aircraft which should be considered when a panel Is being analyzed to 

determine the threshold of permanent damage.     Generally,   Initial devia- 

tions from the cylindrical shape are either nor. specified or simply not 

known during flight conditions.    The displacements and stresses  Induced 

In cylindrical panels may be sensitive to these Imperfections depending 

on their amplitude and shape as Indicated In reference 34 for the  full 

cylindrical shelJ.     If Initial radial Imperfection data are available or 

a nominal amount  Is specified as an approximation,  such data can be 

ir.cludfed in the analysis in the  form of modal  imperfection coefficients, 

A       (reference equation 99). mn 

4.2.10 0EPR0P Response Comparisons with  Experiment and  the 
PETROS-3 Structural Code 

To evaluate  the predictive  capabilities of  DEPROP,   the  calcu- 

lated displacement and strain responses are compared wich available 

experimental  results   (ref.  45)   and with  results generated  from the 

finite difference structural  code  PETROS-3   (ref.   ^6).     The  scope  of 
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these comparisons is not extensive enough to result In a conclusive 

evaluation of DEPROP, but does provide an Initial evaluation of DEPROP 

response relative to available experimental data and another structural 

code based on a different type of solution technique.  For these com- 

parison applications the DEPROP routine of NOVA was temporarily mated to 

an existing pressure loading routine from Kaman AviDyne's computer 

program library.  This special loading routine included pressure time 

histories with linear and exponential decaying functions which were used 

as transient loadings for the DEPROP response comparisons with experi- 

ment and the PETROS-3 structural code. 

Some shock-tube test data were available for panels from tests 

performed at the Armament Laboratory at Eglin Air Force Base and are 

given in reference 45.  The tests at Eglin essentially consisted of 

exposing clamped square panels to a blast from a disposable gas-bag 

shock tube.  The flat panels were subjected to load levels that produced 

large permanent deformation and, in some cases, rupture of the material 

along the clamped edges.  Primarily, only the permanent sets of the 

deformed plates were measured and in a few tests the deflection patterns 

were measured by Moire fringe photography.  Strain measurements were not 

obtained for these tests.  The square flat panels are 18 in. by 18 in. 

and analytical and experimental comparisons are made for plate thick- 

nesses of 0 063 in. and 0.071 in.  The panel material is 2024-T3 alumi- 

num for which a typical stress-strain curve is shown in figure 42 by the 

solid curve.  The bilinear representation of this stress-strain curve 

used in DEPROP Is given by the dashed lines and corresponds to a yield 

stress of 50,000 psi and a strain hardening slope of 1.24 x 10 psi. 

The geometric and physical properties of these plates are summarized in 

table 12.  Pressure measurements were obtained from an instrumented 

rigid panel tested separately under essential]y the same loading as the 

test panels.  These pressure data were used to determine an approximate 

analytical fit in reference 45 using a uniform spatial distribution with 

the temporal decay given by 

xt 

p(t) = p  (1 - t/r) e   ' (137) 
m 
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TABLE 12 

GEOMETRIC AND PHYSICAL PROPERTIES OF PANELS 

Property of Panel 
Eglin Teats 
Comparisons 

PETROS-3 
Comparisons 

Length (In.) 

Width (In.) 

Radius (In.) 

Subtended Angle (Deg) 

Thickness (In.) 

Modulus of Elasticity (psi) 

Polsson's Ratio 

Mass Density 
/ lb-sec' 

\  in' 

Yield Stress (psl) 

Strain Hardening Slope (psi) 

18 

18 

0.063 and 0.071 

10.5 x 106 

0.33 

0.259 x 10 

50,000 

1.24 x 10: 

-3 

20 I 

20 ) 

100 I 

11.48 I 

0.1 

107 

0.3 

Flat Panel 

Curved Panel 

-3 0.259 x 10 

40,000 

0 and 1.5 x 10f 
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where 

Pm 
■ 600 psl 

a - 5.7 

T . 1.5 msec 

The DEPROP panel routine with the special loading routine was 

exercised for two test cases (panel thicknesses of 0.063 and 0.071 in.) 

and the predicted permanent sets compared with the test measurements. 

The DEPROP solutions employed 25 modes selected from a 7x7 array, a 

15x15 spatial integration net over the quarter panel, and five inte- 

gration points through the thickness.  The 0.063-in.-thick panel under- 

went severe plastic deformations and was considered to be near the 

threshold of rupture, although it did not fail.  Figure 43 illustrates 

the analytically determined center displacement time history for the 

0.063-in. panel.  This figure shows an analytical maximum displacement 

of 3.43 in. and a permanent set of about 3.1 in. comparing closely with 

the experimental permanent set of 3.0 in. Figure 44 illustrates the 

deflection shape of the panel at various times during the response.  The 

changing shape pattern predicted by DEPROP corresponds favorably with 

that observed experimentally through the Moire fringe technique and the 

final permanent shape.  Figure 45 shows the inner and outer surface 

strain near the center of the panel where the maximum analytical strain 

occurred.  The maximum analytical tensile strain is 0.133 in./in. and 

the strain behavior across the thickness of the plate at this position 

is strongly membrane.  It should be noted that the maximum tensile 

strain probably occurs at the center of the clamped edge, but the number 

of modes used analytically are not sufficient to predict the edge strain 

accurately.  The fracture strain for this material is about 0.15 in./in. 

and, since this panel did not rupture the edge strain, is probably not 

much greater than the strain near the center of the plate.  For the 

0.071-in. panel, figure 46 shows the analytically determined center 

displacement time history.  Two panels of this thickness were tested 

experimentally and the closeness of the two permanent sets at 2.7 and 

2.8 in. indicated good repeatability of the experiment.  Figure 46 
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indicates that DEPROP predicts a permanent set of about 2.^5 in. which 

compares well with the experimental values.  The differences in the 

analytical and experimental permanent set values for -he two test 

plates considered are less than 4%. 

Comparisons of displacement and strain responses from DEPROP 

with PETROS-3 are made for various panels subjected to a simple trans- 

ient pressure loading.  PETROS-3 (ref. 44) is a dynamic response struc- 

tural code for the calculation of large elastic-plastic deformations of 

plates and shells based on the finite-difference method of solution. 

While DEPROP is based on a modal type solution, there are several simi- 

larities between the numerical methods used in DEPROP and PETROS-3. 

Both codes use the same temporal numerical method (central-difference) 

and the same Gaussian integration technique through the thickness of the 

panel for elastic-plastic solutions.  It should be noted that neither 

DEPROP nor PETROS-3 can be considered as an absolute standard in these 

comparisons. Which solution is more accurate in computing displacement 

and strain quantities within a panel can only be determined by thorough 

correlation with well controlled experiments.  Solutions obtained using 

DEPROP and PETROS-3 were based on the respective mode or mesh limits 

presently dimensioned in each program for reasonable computer running 

times and core size on the CDC 6600 computer.  Thus, the solutions are 

not necessarily optimal relative to complete convergence of strain 

quantities throughout the panels.  For example, neither the number of 

modes used in the DEPROP solutions nor Che finite-difference mesh size 

used in the PETROS-3 solutions are sufficient to determine accurately 

the strains at the clamped edges of a panel undergoing large plastic 

deformations where large strain gradients exist very near the edge.  For 

this reason, only comparisons are made with center strains of the panels. 

For all the panel solutions using DEPROP and PETROS-3, an adequate time 

increment was selected so that numerical convergence was achieved on a 

temporal basis and the same number of integration points through the 

thickness was used in both code solutions.  The panel problems selected 

were all symmetrical so that only one quarter of the panel was con- 

sidered in all solutions.  For DEPROP solutions, 25 diodes were selected 
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from a 7x7 array and a 15x15 spatial integration net was used on the 

quarter panel.  For PETROS-3 solutions, a uniform finite-difference mesh 

of 16x16 on the quarter panel waa modified by halving the mesh size near 

the center and edges of the panel to produce a nonuniform 20x20 mesh. 

Comparisons of center displacement and strain responses from DEPROP and 

PETROS-3 were made for simply supported and clamped 20 in. x 20 in. 

x 0.1 in. square panels with purely elastic, elastic-perfectly plastic 

and elastic-strain hardening materials.  A clamped rectangular panel and 

a clamped cylindrical panel, both with material strain hardening, were 

also used for the response comparisons.  The geometric and physical 

properties of the various panels are summarized in table 12.  Through 

the special loading routine, these panels weie subjected to a uniform 

pressure loading with a triangular pulse shape that instantaneously rose 

to the peak pressure at zero time and decayed to zero pressure at 2 

msec. 

The DEPROP and PETROS-3 comparisons of center displacement and 

strain responses for various material conditions are shown in figures 47 

through 52 for the simply supported square panels at a peak pressure of 

200 psi; in figures 53 through 59 for the clamped square panels at peak 

pressures of 250 psi (elastic-plastic solutions) and 100 psi (purely 

elastic solution); in figures 60 and 61 for the clamped rectangular 

panel (aspect ratio of 1.5) at a peak pressure of 250 psi; and in 

figures 62 through 64 for the clamped cylindrical panel at a peak 

pressure of 250 psi.  From these comparisons of DEPROP and PETROS-3 

responses, the following observations are made: 

1. The comparisons for purely elastic large displace- 

ment response of a square clamped panel (figures 52 

and 54) show satisfactory agreement between DEPROP 

and PETROS-3 for both center displacements and 

strains. 

2. For large elastic-plastic deformations of these 

panels, the comparisons Indicate that the best 

agreement (magnitude differences less than 5«) 

occurs for all center displacement responses 
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and strain response In Che simply supported 

and perfectly plastic plate  (figures 47-49); 

but as the clamped edges,  strain hardening or 

curved geometry are introduced,  the differences 

in strain magnitude increase, generally varying 

between about 3 and 25%. 

The general behavior of the DEPROP and PETROS-3 

response solutions is the same throughout the 

panels,   the primary differences are characterized 

by larger peak magnitudes and times of peak 

response being predicted by PETROS-3 for both 

displacement and strain responses.    The largest 

differences seem to be associated with the clamped 

boundary conditions.     Near the end of this inves- 

tigation,  PETROS-3.5   (ref. 46) became available. 

PETROS-3.5  is a revised version of PETROS-3  that 

has improved  the finite-difference representation 

near the boundaries and  the numerical scheme used 

in the incremental plasticity model.    The elastic- 

plastic  solution  for  the square clamped panel was 

obtained using PETROS-3.5 and compared with  the 

PETROS-3  results.     It was found that differences 

in the central displacement and strain responses 

were less  than 2% between the PETROS-3 and  3.5 

solutions  for the selected panel. 

At early  times during the  response,   the DEPROP 

center strain response exhibits some oscillations 

not produced  in the PETROS-3 strain response.     In 

the PETROS-3  solution at  early times,  the central 

position of  the plate  remains absolutely  flat, 

exhibiting just membrane  strains  in  this  region of 

the plates.     However,  based on the modal-type 

solution  in DEPROP,   this  central portion of  the 

-180- 



l«Piiin     i     i ii       m- u     ——————— mt     i  „wmm»     m 

place Is only nearly flat and exhibits bending 

strains as well as membrane strains In this region 

which account  for the oscillations In the strain 

plots at early times. 

5. It was found that the convergence of the strain 

response In the PETROS-3 calculation Is much more 

sensitive to  Increases  In time Increment and mesh 

size than the DEPROP calculation Is to Increases In 

time Increment and decreases In the number of modes 

used. 

6. Because of the larger strain gradient near the 

clamped edges of the severely deformed panels.  It is 

felt that neither DEPROP nor PETROS-3 accurately 

predicts the strains at a clamped edge with the 

modes and finite-difference mesh, respectively,  used 

herein.    To assess the degree of accuracy of analy- 

tical predictions,  experimental strain data are 

needed near the clamped edges oi selected panels 

loaded with a well defined pressure time history. 

7. Although neither code's  solution parameters,  such as 

modes and mesh size,  should be considered as optimal 

for the computation of converged center strains.  It 

was found that PETROS-3 required a smaller time 

Increment  than DEPROP for a nearly convergent 

center strain solution.     For these panels using the 

aforementioned solution parameters, DEPROP solutions 

used about half  the central processor computer time 

used by PETROS-3 solutions. 
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SECTION V 

DAMAGE CRITERIA 

The computer program contains the option of selecting two levels of 

damcge to the structural elements being analyzed.    One level corre- 

sponds to no permanent damage and the other  level corresponds to catas- 

trophic damage.    However,  the analyst must  interpret the effect  that  the 

damaged panel or structural element has on  the performance or mission 

of the aircraft.    The analyst also has the option of specifying the prob- 

ability that  the damage level selected will be exceeded.    For example, 

the analyst might specify the no-damage level and a probability of  5 

percent that the no-damage level will be exceeded;  that Is,  that damage 

will occur.     The method of establishing the probability that a specific 

level of damage will be exceeded will now be described. 

Designate the structural response parameter  (stress  >r strain) 

by R and the value of R at which the specified damage level occurs by 

R,.    The preblast value of the parameter will be designated by R    and 

the maximum value calculated by the program with respect to time by R  . 

The value of R    will be defined such that  the probability of exceeding 
P 

R, will be the specified value,  m.    This is accomplished by estimating 

the accuracy of the prediction and then assuming that the probability 

density distribution of the response is normal.    The assumption of a 

normal distribution is based upon the central-limit theorem, which 

states that  the sum of Independent variates  from the same or different 

distributions  is normally distributed in the limit and that  this limit 

is approached very rapidly (see ref.  47).     The large number of variables 

which influence    the response of  the  snructure justifies  the assumption 

of a normal distribution. 
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Assuming Chst Che analysis Is unbiased, R Is the mean of the 

normal distribution Illustrated In figure 65. The shaded area repre- 

sents the probability that the specified damage level R. will be exceeded 

by m percent. It is assumed that the inaccuracy In R can be defined by 

a factor X, such that three standard deviations in response will be 

equal to XR ; that Is, 

3a - XR (138) 

The choice of three standard deviations Is arbitrary. The problem of 

defining X so that It corresponds to the number of standard deviations 

chosei will be treated later. 

The number of standard deviations, n, associated with the prob- 

ability, m, can be determined from normal probability distribution 

tables. For example, if m is 5 percent, the associated value of n is 

1.645. Assembling all of the above assumptions and observations, the 

value of R sought, which we will denote by R , can be written as 
P P 

R Rd - no (139) 

or, Introducing equation 138 with the response, R , replaced by the 

desired response, R , 

R - R. - n | R 
p   d    3  p 

(140) 

Solving equation 140 for R , 

% " 1 + C 
(141) 

-183- 

1 "i MMHl ■-•• -■■■--- i 



MIIHamilli.li    I   ii    «H^iimwm.'rf ' \    I1 ^•'•'•"<*vr:™^mVmr,,mm,m*mm"<f  '■" "" «"'WIM    -^^-^-^^-^^^^rrn^r^^-^r^-^ ™w-^T™™^w^¥,^TrT, niJi«lii||iiViiiiiM 

3 

?: 

< o 
O 

5 

Rp Rd 

RESPONSE   PARAMETER,  R 

♦Provided  that R 

Figure  65  -  Nonnal  Probability Density  Distribution of 
Response Parameter,   R 
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where 

5  5 — (142) 

The remaining problem In the Implementation of the above equations Is 

the determination of the structural response, R., associated with the 
a 

level of damage specified, and the determination of the Inaccuracy fac- 

tor, X. 

5.1 DETERMINATION OF DAMAGE PARAMETER, Rj a 

The program contains  the option of selecting two damage levels, 

no-damage and catastrophic damage.    The no-damage response level Is 

Interpreted as that level of structural response which represents the 

threshold of damage.    The severe or catastrophic level of damage is 

Interpreted as that level of response at which the material ruptures or 

fractures. 

When the damage level and the percent probability that the level 

will be exceeded are specified, the program can be used to determine 

the range at which the desired response will occur with the desired 

probability.  The process is Iterative; a trial range is specified, and 

the response is determined and compared to a criterion.  The range is 

adjusted within the program and the process is repeated until the ratio 

of maximum stress (R ) to the critical stress (R ) converges to unity. 

For no-damage response, the program uses the largest value f the 

ratio of maximum stress (R ) to the critical stress (R ).  In order to 
P P    _ 

permit an orderly iteration process, values of the ratio (R /R ) greater 

than unity must be allowed. In addition, the critical stress may be 

greater than the yield stress, depending upon the selected value of 

probability, m. Actually, the material yields and, presumably, the struc- 

ture follows a different branch of the stress-strain curve; hence, an 

artificial means must be incorporated within the program to permit 

-185- 

    — ■- ■ ■ ■ ■     ■ 



III. W ™ i i   T '— -"I". ■ . HI   Wl I I » I 

hlr/'.ier stresses than the yield stress along the elastic curve. This Is 

accomplished by disregarding yielding and using the extended elastic 

stress-strain curve for the no-damage condition. This artifice permits 

a continuous variation of the response with range, which Is necessary 

In order to achieve a systematic Iteration process. 

The process Is similar for catastrophic damage. For plastic materials 

or for buckling analyses, the process Is Identical, except that larger 

stresses are considered critical. Otherwise, the elastic-plastic stress- 

strain curve must be made to accommodate strains exceeding the fracture 

level.  In DEPROV, the stress-strain curve is extended beyond ultimate 

strain with the same strain hardening slope, while in DEPROB a perfectly 

plastic extension of the stress-strain curve is assumed. Both of these 

artificial extensions permit the calculation of response strains beyond 

the ultimate strain and therefore allows a smooth iteration process 

for all selected values of probability, m. 

The type of structure being analyzed determines the level of stress 

or deformation associated with the threshold of damage or catastrophic 

damage.  Both levels of damage are discussed for single-layered and multi- 

layered honeycomb panels and for stiffeners, frames, radomes, and ribs. 

5.1.1 Single-Layered Panels 

The DEPROP program is used to determine the stresses and strains 

Induced in single-layered panels by steady-state and transient pressure 

loads. These stress and strain quantities are related to conditions in 

the material that can produce permanent deformations or rupture of a 

panel. Yielding of the material is taken as the limiting condition 

for threshold of permanent damage for metal panels.  Since the panel 

deformations are biaxial, the yield stress is compared with the equiv- 

alent stress ö associated with the Mises-Hencky yield criterion 

(equation 109).  This yield criterion states that plastic flow will 

occur when the equivalent stress a reaches a value equal to the unlaxial 
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yield stress. For plastic or reinforced plastic materials which are 

assumed to be loaderi elastlcally to an ultimate stress or strain and 

therefore attain a fracture condition without actually yielding, 70 

percent of the tensile ultimate stress and 100 percent of the compresslve 

ultimate stress are taken as the critical stresses which define the 

limiting condition for threshold of permanent damage.  It should be 

noted that curved panels could undergo elastic buckling prior to material 

yielding, but this phenomenon is not considered critical since after the 

load is removed the panel returns to its original undeformed condition. 

For catastrophic damage of single-layered metal panels, large 

Inelastic deformations are produced during the response that lead to 

rupture of the material. An approximate rupture criterion is established 

which compares the uniaxial rupture fracture strain of the material 

with the effective strain t  (equation 112) using checks to Insure that 

a tensile strain condition is present. For catastrophic damage of plas- 

tic and reinforced plastic panels, the criterion is based on the ulti- 

mate tensile stress of the material and is compared with the principal 

tensile stresses in the panel.  For brittle materials, it Is assumed 

that fracture occurs at the ultimate tensile stress. 

5.1.2 Honeycomb Panels 

The multilayer panel option of the DEPROP program is used to 

determire elastic stresses and strains induced in honeycomb panels due 

to pressure loads. The honeycomb panel is a three-layered panel with 

either Isotropie or orthotropic material properties. 

The yield stress in the f-.ce sueet is used as one criterion 

or limiting condition for metal face sheets when establishing the 

threshold of permanent damage for honeycomb panels.  For reinforced 

plastic face sheets, 70 percent of tensile ultimate stress and 100 per- 

cent of compresslve ultimate stress are used for the threshold of 

permanent damage. Other criteria for honeycomb panels are often required 
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since the panels can experience local Instabilities such as Intracell 

buckling or face sheet wrinkling. The Intracell buckling occurs mainly 

for honeycomb panels with thin face sheets, and face sheet wrinkling 

occurs mainly for low-density cores and weak bonding systems,  if these 

instabilities are severe enough to result in permanent deformations In 

the panel, they are acceptable as a Uniting condition for threshold 

of permanent damage. Formulas are given in reference 48 which relate 

intracell buckling or wrinkling to the geometric and material proper- 

ties cf the honeycomb panel as follows. For intracell buckling. 

a  - 3E, er    f (;): 
(143) 

where 

a  - critical stress in the face sheet, psi er r 

f ■> face sheet thickness. Inches 

d " core cell size. Inches 

Ef » elastic modulus of the face sheet, psi 

For wrinkling, 

a  - 0.5 (G E EJ cr       c c f 
1/3 (144) 

where 

cr 

G 

critical stress in the face sheet, psi 

core shear modulus, psi 

core modulus of elasticity parallel to the core depth, psi 

modulus of elasticity of the face sheet, psi 
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As Indicated earlier, the elastic-plastic option of DEPROP is 

limited to aingle-lavered isotropic panels.  Consequently, in deter- 

mining catastrophic damage of honeycomb metal panels, an "equivalent" 

single-layered panel is developed in subsection 4.2.8 to represent the 

deformation response of the original honeycomb in the elastic and 

inelastic ranges. Catastrophic damage for a honeycomb metal panel is 

based on the rupture strain of the face sheet material. 

5.1.3 Stiffeners and Frames 

The DEPROB routine can be used to calculate the response of 

stiffeners and frames combined with local effective skin due to a 

pressure loading. The dynamic response includes deflections and accel- 

erations of the structural element plur stress throughout the cross 

section, particularly stress in the outer fibers of the cross section. 

The stresses of the outer fibers apply to either the flange plus the 

effective skin attached to the flange or to the outstanding leg of 

the element.  In general, either can be loaded in tension or com- 

pression. To determine the threshold of permanent damage, the stresses 

in the outer fibers are compared to the yield stress for tensile or 

compressive loads. The magnitude of the moment at the fixed ends of a 

uniform beam carrying a uniform static load is twice that of the moment 

at t.ie center of the beam.  Consequently, the threshold of permanent 

damage will be achieved primarily by buckling of the outstanding leg at 

the  end of the beam for this case, rather than yielding in tension or 

compression at any point along the beam. Crippling stress formulas are 

available for local buckling of outstanding legs of different shaped 

stringer or frame elements.  The crippling stress formula used in the 

program is identical to that used in reference 49, page Cl.2-36: 

±) fcc = KE (^ ) (145) 
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where 

£    - crippling stress  for the outstanding leg,  psl 

K    - buckling coefficient equal to 1.25 If the outstanding leg 

has only one corner, and equal to 3.62 If the outstanding leg 

has two corners 

E    - modulus of elasticity,  psl 

tf - thickness of the outstanding leg.  Inches 

w    - width of the outstanding leg.  Inches 

For nonuniform beam elements,  tf and w at the center of the beam are 

used as representative values. 

Local buckling or crippling is a minor type of failure com- 

pared with reaching ultimate strain or rupture of some portion of the 

cross section.    Consequently,  catastrophic damage for stiffeners and 

frames Is based on tensile rupture strain in the outer fibers. 

And for clamped beam elements subjected to catastrophic 

damage,   DEPROB computes a very localized ideal edge strain which can far 

exceed usual handbook rupture strain levels prior to actual rupture. 

Therefore, a strain equal to one-third that computed at the edge Is 

compared with rupture strain levels for catastrophic damage. 

5.1.4    Radomes and Other Shells 

Radomes on various aircraft have different  shapes.     Some 

radomes are best analyzed by the DEPROP program where a curved panel 

representation is reasonabx'i.    Other radomes,   such as the nose and tall 

radon.es of the Bl, are conical or near-cylindrical shells.     For these 

shapes,  a two-dimensional  ring representation is reasonable  and the 

DEPROB program should be used.     Since reinforced plastic material which 

fractures at ultimate strain is used in radomes,   70 percent of tensile 

ultimate stress and 100 percent compresslve ultimate stress are used for 

the threshold of permanent  damage,  and ultimate  tensile strain is used 

for catastrophic damage. 
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DEPROB ctn also be used to analyze a metal shell In an approx- 

imate way when modeled as a free ring.    In this case the threshold of 

damage criterion is based on tensile and compressive yield stresses, 

compared to stresses in the outer fibers.    Catastrophic damage is based 

on tensile strain in the outer fibers exceeding rupture strain. 

5.1.5 Rib Webs and Stiffeners 

Failure in vertical metal rib elements is assumed to occur in 

a buckling mode.    Modeled as an axially loaded beam with fixed ends 

(except that motion is permitted in the axial direction), threshold of 

permanent damage and catastrophic damage are both related to the occur- 

rence of column buckling.     It should be noted that as a material begins 

to yield.  It quickly loses its resistance to buckling.    Although the two 

events are clearly separate phenomena, experience indicates that if for 

increasing levels of load the beam has not buckled by the time it begins 

to yield, it will with very little additional load. 

Catastrophic damage,  then,  is defined as the point at which 

the tensile strain in the outer fibers exceeds the tensile ultimate 

strain, which will usually closely follow the attainment of tensile 

yield strains.    Threshold of permanent damage is defined as a maximum 

tensile or compressive strain equal to 70% of yield strain. 

For situations in which the rib collapses,  the numerical pro- 

cedures employed may not be able to keep up with the process.     In such 

cases,  the program assigns a negative number to the maximum response and 

proceeds to select a larger range. 

5.1.6 Damage Criteria Summary 

In summary, damage criteria for panels,  stiffeners,   frames, 

radomes, and ribs are given in table 13  for threshold of permanent 

damage,  TPD,  and catastrophic damage, CD.     In general,  all spatial 

locations on the structural elements are checked in the  timewise solu- 

tion In order to accumulate  the maximum response parameters.     While 

DEPROB checks the parameters every time step, DEPROP checks only every 

tenth step-a procedure which conserves computer  time in the  slower 

running DEPROP without significant loss of accuracy. 
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TABLE   13 

CRITERIA FOR THRESHOLD OF PERMANENT DAMAGE  (TPD) 

AND CATASTROPHIC DAMAGE  (CD) 

Program - DEPROP 

Structural Element - Panels 

Spatial Locations Considered - All spatial Integration points 

Types of Panels: 

1. Single-layered metal 

TPD -    Compare tensile or compresslve yield stress with 
Mlses-Hencky equivalent stress at inner and outer 
surfaces. 

CD    -    Compare rupture strain with effective tensile strain 
at  inner and outer surfaces. 

2. Single-layered plastics 

TPD - Compare 70 percent of tensile and 100 percent of 
compresslve ultimate stresses with principal tensile 
and compresslve stresses, respectively, at the inner 
and outer surfaces. 

CD - Compare tensile ultimate stress with principal ten- 
sile stresses at inner and outer surfaces. 

Honeycomb metal 

TPD - Compare tensile yield stress with Mlses-Hencky equiva- 
lent stresses at centers of face sheets; compare Che 
compresslve yield stress with Mlses-Hencky equivalent 
stress at centers of face sheets; and compare the low- 
est of intracell buckling stress and face sheet wrin- 
kling stress with maximum principal compresslve 
stresses at centers of face sheets. 
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TABLE 13 (Continued) 

CD Compare face sheet rupture strain with effective 
tensile strains at points on equivalent single- 
layered cross section which correspond to the center 
of the face sheets of original cross section. 

4.  Honeycomb reinforced plastics 

TPD - 

CD 

Compare 70 percent of tensile ultimate stress with 
principal tensile stresses at centers of face sheets; 
and compare the lowest jf 100 percent compressive 
ultimate stress, intracell buckling stress, and face 
sheet wrinkling stress with maximum compressive 
stresses at centers of face sheets. 

Compare ultimate tensile stress with principal 
tensile stresses at centers of face sheets. 

5.  Multilayered plastics 

TPD - 

CD 

Compare 70 percent of tensile and 100 percent of 
compressive ultimate stresses with principal tensile 
and compressive stresses, respectively, at inner and 
outer surfaces of each layer. 

Compare ultimate tensile stress with principal 
teasile stresses at inner and outer surfaces of each 
layer. 

Program - DEPROB 

Structural Element - Stiffeners and Frames (beam elements) 

Spatial Locations Considered - All bars of beam 

TPD 

CD 

More critical of (a) comparison of largest tensile 
and compressive stresses on inner and outer fibers 
with tensile and compressive yield stresses, respec- 
tively; (b) comparison of largest compressive stress 
on outstanding leg with the crippling stress. 

Compare rupture strain with largest tensile strains 
on inner and outer fibers. 
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TABLE 13 (Concluded) 

Structural Element - Shells (Free Ring) 

Spatial Locations Considered - All Bars of Ring 

Types of shells: 

1.  Reinforced Plastic Radomes 

TPD    - 

CD 

Compare 70 percent of tensile and 100 percent 
of compresslve ultimate stresses with tensile 
and compressive stresses,  respectively,  at 
inner and outer fibers. 

Compare ultimate tensile strain with largest 
tensile strains on inner and outer fibers. 

2.  Metal 

TPD - 

CD  - 

Compare tensile and compressive yield stresses 
with tensile and compressive stresses, respec- 
tively, in the inner and outer fibers of each 

layer. 

Compare rupture strain with largest tensile 
strains on inner and outer fibers. 

Structural Element - Ribs (End Loaded, Clamped Beam Element) 

Spatial Locations Considfired - All Bars of Beam 

I?D -   Compare 70 percent of tensile and compressive 
yield stress with largest tensile and com- 
pressive stresses, respectively, in inner and 
outer fibers. 

CD  -   Compare rupture strain with largest tensile 
strains on inner and outer fibers. 

-194- 

l    mm^. 



■■mmn 

5.2 DETERMINATION OF INACCURACY FACTOR, X 

In order to establish the probability of threshold or catastrophic 

damage occurring, the Inaccuracy factor, X, In equation (142) must be 

defined. Note that the determination of X Is highly subjective and Is 

not subject to verification by analysis. Only by comparing a large 

group of experimentally produced responses to pressure loads from 

nuclear blasts under varying conditions with corresponding calculated 

responses could X be determined objectively. 

Assuming that the environmental conditions are known exactly, the 

largest Inaccuracies are assumed to exist In the modeling of the struc- 

ture as discrete elements. Values of fractional Inaccuracy, X, have 

been selected for the various conditions considered and related to 

accuracy factors which are given In table 14. These values are very 

subjective and represent the best estimates the authors can make based 

on their experience In the present and related problems. If the accuracy 

factor Is 2, the actual response is considered to be within a factor 

of 2 of the predicted response.  This results in different values of X 

(and hence standard deviations) for responses greater than R (X ) and 

less than R  (X~) (figure 65). These values of X are related to ACC by 

ACC - 1 (146) 

X - 1 - ACC (147) 

In terms of probability, if the probability, m, < 0.5, X is used in the 

program to determine 5; if m > 0.5, X is used. The accuracy factor is 

considered to be more meaningful than a single value of X.  For example, 

if X were taken as one, there would be an implication that the likeli- 

hood of zero response would correspond to the likelihood of twice the 

predicted response.  Such an implication can be rejected on purely 

intuitive grounds; hence, the accuracy factor, which avoids this diffi- 

culty, seems to be more logical. 
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TABLE 14 

ACCURACY FACTORS FOR CRITICAL RESPONSES, ACC 

Structural Threshold of 
Elements Permanent Damage Catastrophic Damage 

Single-Layered 1.3 1.8 
Metal Panels 

Single-Layered 1.3 1.5 
Plastic Panels 

Honeycomb Metal 1.5 2.0 
Panels 

Honeycomb Plastic 1.5 1.7 
Panels > 

Multilayered 1.4 1.6 
Plastic Panels 

Stiffeners 1.3 1.7 

Frames 1.5 1.8 

Radomes and Other 
Free Rings 

Metal 1.6 1.8 

Plastic 1.6 1.8 

Ribs 2.0 2.0 
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